Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*****************************************************************************
* Copyright (C) 2009-2020 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Pierre Morfouace contact address: pierre.morfouace2@cea.fr *
* *
* Creation Date : May 2020 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold PISTA Treated data *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
* *
*****************************************************************************/
#include "TPISTAPhysics.h"
// STL
#include <sstream>
#include <iostream>
#include <cmath>
#include <stdlib.h>
#include <limits>
using namespace std;
// NPL
#include "RootInput.h"
#include "RootOutput.h"
#include "NPDetectorFactory.h"
#include "NPOptionManager.h"
// ROOT
#include "TChain.h"
ClassImp(TPISTAPhysics)
///////////////////////////////////////////////////////////////////////////
TPISTAPhysics::TPISTAPhysics(){
EventMultiplicity = 0;
m_EventData = new TPISTAData;
m_PreTreatedData = new TPISTAData;
m_EventPhysics = this;
m_Spectra = NULL;
m_E_RAW_Threshold = 0; // adc channels
m_E_Threshold = 0; // MeV
m_NumberOfDetectors = 0;
m_MaximumStripMultiplicityAllowed = 10;
m_StripEnergyMatching = 0.050;
}
///////////////////////////////////////////////////////////////////////////
/// A usefull method to bundle all operation to add a detector
// In That simple case nothing is done
// Typically for more complex detector one would calculate the relevant
// positions (stripped silicon) or angles (gamma array)
m_NumberOfDetectors++;
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::AddDetector(double R, double Theta, double Phi){
m_NumberOfDetectors++;
//double Height = 118; // mm
double Height = 61.8; // mm
//double Base = 95; // mm
double Base = 78.1; // mm
double NumberOfStrips = 128;
double StripPitchHeight = Height / NumberOfStrips; // mm
double StripPitchBase = Base / NumberOfStrips; // mm
// Vector U on detector face (parallel to Y strips) Y strips are along X axis
TVector3 U;
// Vector V on detector face (parallel to X strips)
TVector3 V;
// Vector W normal to detector face (pointing to the back)
TVector3 W;
// Vector C position of detector face center
TVector3 C;
C = TVector3(R*sin(Theta)*cos(Phi),
R*sin(Theta)*sin(Phi),
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
TVector3 P = TVector3(cos(Theta)*cos(Phi),
cos(Theta)*sin(Phi),
-sin(Theta));
W = C.Unit();
U = W.Cross(P);
V = W.Cross(U);
U = U.Unit();
V = V.Unit();
vector<double> lineX;
vector<double> lineY;
vector<double> lineZ;
vector<vector<double>> OneDetectorStripPositionX;
vector<vector<double>> OneDetectorStripPositionY;
vector<vector<double>> OneDetectorStripPositionZ;
double X, Y, Z;
// Moving C to the 1.1 Corner;
TVector3 Strip_1_1;
Strip_1_1 = C - (0.5*Base*U + 0.5*Height*V) + U*(StripPitchBase / 2.) + V*(StripPitchHeight / 2.);
TVector3 StripPos;
for(int i=0; i<NumberOfStrips; i++){
lineX.clear();
lineY.clear();
lineZ.clear();
for(int j=0; j<NumberOfStrips; j++){
StripPos = Strip_1_1 + i*U*StripPitchBase + j*V*StripPitchHeight;
lineX.push_back(StripPos.X());
lineY.push_back(StripPos.Y());
lineZ.push_back(StripPos.Z());
}
OneDetectorStripPositionX.push_back(lineX);
OneDetectorStripPositionY.push_back(lineY);
OneDetectorStripPositionZ.push_back(lineZ);
}
m_StripPositionX.push_back(OneDetectorStripPositionX);
m_StripPositionY.push_back(OneDetectorStripPositionY);
m_StripPositionZ.push_back(OneDetectorStripPositionZ);
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
///////////////////////////////////////////////////////////////////////////
TVector3 TPISTAPhysics::GetPositionOfInteraction(const int i){
TVector3 Position = TVector3(GetStripPositionX(DetectorNumber[i], StripX[i], StripY[i]),
GetStripPositionY(DetectorNumber[i], StripX[i], StripY[i]),
GetStripPositionZ(DetectorNumber[i], StripX[i], StripY[i]));
return Position;
}
///////////////////////////////////////////////////////////////////////////
TVector3 TPISTAPhysics::GetDetectorNormal(const int i){
TVector3 U = TVector3(GetStripPositionX(DetectorNumber[i],128,1),
GetStripPositionY(DetectorNumber[i],128,1),
GetStripPositionZ(DetectorNumber[i],128,1))
-TVector3(GetStripPositionX(DetectorNumber[i],1,1),
GetStripPositionY(DetectorNumber[i],1,1),
GetStripPositionZ(DetectorNumber[i],1,1));
TVector3 V = TVector3(GetStripPositionX(DetectorNumber[i],128,128),
GetStripPositionY(DetectorNumber[i],128,128),
GetStripPositionZ(DetectorNumber[i],128,128))
-TVector3(GetStripPositionX(DetectorNumber[i],128,1),
GetStripPositionY(DetectorNumber[i],128,1),
GetStripPositionZ(DetectorNumber[i],128,1));
TVector3 Normal = U.Cross(V);
return (Normal.Unit());
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::BuildSimplePhysicalEvent() {
BuildPhysicalEvent();
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::BuildPhysicalEvent() {
// apply thresholds and calibration
PreTreat();
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
if(1 /*CheckEvent() == 1*/){
vector<TVector2> couple = Match_X_Y();
EventMultiplicity = couple.size();
for(unsigned int i=0; i<couple.size(); i++){
int N = m_PreTreatedData->GetFirstStage_XE_DetectorNbr(couple[i].X());
int X = m_PreTreatedData->GetFirstStage_XE_StripNbr(couple[i].X());
int Y = m_PreTreatedData->GetFirstStage_YE_StripNbr(couple[i].Y());
double XE = m_PreTreatedData->GetFirstStage_XE_Energy(couple[i].X());
double YE = m_PreTreatedData->GetFirstStage_YE_Energy(couple[i].Y());
DetectorNumber.push_back(N);
StripX.push_back(X);
StripY.push_back(Y);
DE.push_back(XE);
PosX.push_back(GetPositionOfInteraction(i).x());
PosY.push_back(GetPositionOfInteraction(i).y());
PosZ.push_back(GetPositionOfInteraction(i).z());
int SecondStageMult = m_PreTreatedData->GetSecondStageMultXEnergy();
for(unsigned int j=0; j<SecondStageMult; j++){
if(m_PreTreatedData->GetSecondStage_XE_DetectorNbr(j)==N){
double XDE = m_PreTreatedData->GetSecondStage_XE_Energy(j);
double YDE = m_PreTreatedData->GetSecondStage_YE_Energy(j);
E.push_back(XDE);
}
}
}
}
}
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
///////////////////////////////////////////////////////////////////////////
vector<TVector2> TPISTAPhysics::Match_X_Y(){
vector<TVector2> ArrayOfGoodCouple;
static unsigned int m_XEMult, m_YEMult;
m_XEMult = m_PreTreatedData->GetFirstStageMultXEnergy();
m_YEMult = m_PreTreatedData->GetFirstStageMultYEnergy();
if(m_XEMult>m_MaximumStripMultiplicityAllowed || m_YEMult>m_MaximumStripMultiplicityAllowed){
return ArrayOfGoodCouple;
}
for(unsigned int i=0; i<m_XEMult; i++){
for(unsigned int j=0; j<m_YEMult; j++){
// Declaration of variable for clarity
int XDetNbr = m_PreTreatedData->GetFirstStage_XE_DetectorNbr(i);
int YDetNbr = m_PreTreatedData->GetFirstStage_YE_DetectorNbr(j);
// if same detector check energy
if(XDetNbr == YDetNbr){
// Declaration of variable for clarity
double XE = m_PreTreatedData->GetFirstStage_XE_Energy(i);
double YE = m_PreTreatedData->GetFirstStage_YE_Energy(i);
double XStripNbr = m_PreTreatedData->GetFirstStage_XE_StripNbr(i);
double YStripNbr = m_PreTreatedData->GetFirstStage_YE_StripNbr(i);
// look if energy matches
if(abs(XE-YE)/2.<m_StripEnergyMatching){
ArrayOfGoodCouple.push_back(TVector2(i,j));
}
}
}
}
return ArrayOfGoodCouple;
}
///////////////////////////////////////////////////////////////////////////
int TPISTAPhysics::CheckEvent(){
// Check the size of the different elements
if(m_PreTreatedData->GetFirstStageMultXEnergy() == m_PreTreatedData->GetFirstStageMultYEnergy() )
return 1;
else
return -1;
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::PreTreat() {
// This method typically applies thresholds and calibrations
// Might test for disabled channels for more complex detector
// clear pre-treated object
ClearPreTreatedData();
// instantiate CalibrationManager
static CalibrationManager* Cal = CalibrationManager::getInstance();
//////
// First Stage Energy
unsigned int sizeFront = m_EventData->GetFirstStageMultXEnergy();
for (UShort_t i = 0; i < sizeFront ; ++i) {
if (m_EventData->GetFirstStage_XE_Energy(i) > m_E_RAW_Threshold) {
Double_t Energy = m_EventData->GetFirstStage_XE_Energy(i);
//Double_t Energy = Cal->ApplyCalibration("PISTA/ENERGY"+NPL::itoa(m_EventData->GetFirstStage_XE_DetectorNbr(i)),m_EventData->GetFirstStage_XE_Energy(i));
if (Energy > m_E_Threshold) {
m_PreTreatedData->SetFirstStageXE(m_EventData->GetFirstStage_XE_DetectorNbr(i), m_EventData->GetFirstStage_XE_StripNbr(i), Energy);
}
}
}
unsigned int sizeBack = m_EventData->GetFirstStageMultXEnergy();
for (UShort_t i = 0; i < sizeBack ; ++i) {
if (m_EventData->GetFirstStage_YE_Energy(i) > m_E_RAW_Threshold) {
Double_t Energy = m_EventData->GetFirstStage_YE_Energy(i);
//Double_t Energy = Cal->ApplyCalibration("PISTA/ENERGY"+NPL::itoa(m_EventData->GetFirstStage_YE_DetectorNbr(i)),m_EventData->GetFirstStage_YE_Energy(i));
if (Energy > m_E_Threshold) {
m_PreTreatedData->SetFirstStageYE(m_EventData->GetFirstStage_YE_DetectorNbr(i), m_EventData->GetFirstStage_YE_StripNbr(i), Energy);
}
}
}
// First Stage Time
unsigned int mysize = m_EventData->GetFirstStageMultXTime();
for (UShort_t i = 0; i < mysize; ++i) {
Double_t Time= Cal->ApplyCalibration("PISTA/TIME"+NPL::itoa(m_EventData->GetFirstStage_XT_DetectorNbr(i)),m_EventData->GetFirstStage_XT_Time(i));
m_PreTreatedData->SetFirstStageXT(m_EventData->GetFirstStage_XT_DetectorNbr(i), m_EventData->GetFirstStage_XT_StripNbr(i), Time);
}
//////
// Second Stage Energy
sizeFront = m_EventData->GetSecondStageMultXEnergy();
for (UShort_t i = 0; i < sizeFront ; ++i) {
if (m_EventData->GetSecondStage_XE_Energy(i) > m_E_RAW_Threshold) {
Double_t Energy = m_EventData->GetSecondStage_XE_Energy(i);
//Double_t Energy = Cal->ApplyCalibration("PISTA/ENERGY"+NPL::itoa(m_EventData->GetSecondStage_XE_DetectorNbr(i)),m_EventData->GetSecondStage_XE_Energy(i));
if (Energy > m_E_Threshold) {
m_PreTreatedData->SetSecondStageXE(m_EventData->GetSecondStage_XE_DetectorNbr(i), m_EventData->GetSecondStage_XE_StripNbr(i), Energy);
}
}
}
sizeBack = m_EventData->GetSecondStageMultXEnergy();
for (UShort_t i = 0; i < sizeBack ; ++i) {
if (m_EventData->GetSecondStage_YE_Energy(i) > m_E_RAW_Threshold) {
Double_t Energy = m_EventData->GetSecondStage_YE_Energy(i);
//Double_t Energy = Cal->ApplyCalibration("PISTA/ENERGY"+NPL::itoa(m_EventData->GetSecondStage_YE_DetectorNbr(i)),m_EventData->GetSecondStage_YE_Energy(i));
if (Energy > m_E_Threshold) {
m_PreTreatedData->SetSecondStageYE(m_EventData->GetSecondStage_YE_DetectorNbr(i), m_EventData->GetSecondStage_YE_StripNbr(i), Energy);
}
}
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::ReadAnalysisConfig() {
bool ReadingStatus = false;
// path to file
string FileName = "./configs/ConfigPISTA.dat";
// open analysis config file
ifstream AnalysisConfigFile;
AnalysisConfigFile.open(FileName.c_str());
if (!AnalysisConfigFile.is_open()) {
cout << " No ConfigPISTA.dat found: Default parameter loaded for Analayis " << FileName << endl;
return;
}
cout << " Loading user parameter for Analysis from ConfigPISTA.dat " << endl;
// Save it in a TAsciiFile
TAsciiFile* asciiConfig = RootOutput::getInstance()->GetAsciiFileAnalysisConfig();
asciiConfig->AppendLine("%%% ConfigPISTA.dat %%%");
asciiConfig->Append(FileName.c_str());
asciiConfig->AppendLine("");
// read analysis config file
string LineBuffer,DataBuffer,whatToDo;
while (!AnalysisConfigFile.eof()) {
// Pick-up next line
getline(AnalysisConfigFile, LineBuffer);
// search for "header"
string name = "ConfigPISTA";
if (LineBuffer.compare(0, name.length(), name) == 0)
ReadingStatus = true;
// loop on tokens and data
while (ReadingStatus ) {
whatToDo="";
AnalysisConfigFile >> whatToDo;
// Search for comment symbol (%)
if (whatToDo.compare(0, 1, "%") == 0) {
AnalysisConfigFile.ignore(numeric_limits<streamsize>::max(), '\n' );
}
else if (whatToDo=="E_RAW_THRESHOLD") {
AnalysisConfigFile >> DataBuffer;
m_E_RAW_Threshold = atof(DataBuffer.c_str());
cout << whatToDo << " " << m_E_RAW_Threshold << endl;
}
else if (whatToDo=="E_THRESHOLD") {
AnalysisConfigFile >> DataBuffer;
m_E_Threshold = atof(DataBuffer.c_str());
cout << whatToDo << " " << m_E_Threshold << endl;
}
else {
ReadingStatus = false;
}
}
}
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::Clear() {
EventMultiplicity = 0;
// Position Information
PosX.clear();
PosY.clear();
PosZ.clear();
// DSSD
DetectorNumber.clear();
E.clear();
StripX.clear();
StripY.clear();
Time.clear();
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::ReadConfiguration(NPL::InputParser parser) {
vector<NPL::InputBlock*> blocks = parser.GetAllBlocksWithToken("PISTA");
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << "//// " << blocks.size() << " detectors found " << endl;
vector<string> cart = {"POS"};
vector<string> sphe = {"R","Theta","Phi"};
for(unsigned int i = 0 ; i < blocks.size() ; i++){
if(blocks[i]->HasTokenList(cart)){
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << endl << "//// PISTA " << i+1 << endl;
TVector3 Pos = blocks[i]->GetTVector3("POS","mm");
}
else if(blocks[i]->HasTokenList(sphe)){
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << endl << "//// PISTA " << i+1 << endl;
double R = blocks[i]->GetDouble("R","mm");
double Theta = blocks[i]->GetDouble("Theta","deg");
double Phi = blocks[i]->GetDouble("Phi","deg");
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
}
else{
cout << "ERROR: check your input file formatting " << endl;
exit(1);
}
}
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::InitSpectra() {
m_Spectra = new TPISTASpectra(m_NumberOfDetectors);
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::FillSpectra() {
m_Spectra -> FillRawSpectra(m_EventData);
m_Spectra -> FillPreTreatedSpectra(m_PreTreatedData);
m_Spectra -> FillPhysicsSpectra(m_EventPhysics);
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::CheckSpectra() {
m_Spectra->CheckSpectra();
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::ClearSpectra() {
// To be done
}
///////////////////////////////////////////////////////////////////////////
map< string , TH1*> TPISTAPhysics::GetSpectra() {
if(m_Spectra)
return m_Spectra->GetMapHisto();
else{
map< string , TH1*> empty;
return empty;
}
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::WriteSpectra() {
m_Spectra->WriteSpectra();
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::AddParameterToCalibrationManager() {
CalibrationManager* Cal = CalibrationManager::getInstance();
for (int i = 0; i < m_NumberOfDetectors; ++i) {
Cal->AddParameter("PISTA", "D"+ NPL::itoa(i+1)+"_ENERGY","PISTA_D"+ NPL::itoa(i+1)+"_ENERGY");
Cal->AddParameter("PISTA", "D"+ NPL::itoa(i+1)+"_TIME","PISTA_D"+ NPL::itoa(i+1)+"_TIME");
}
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::InitializeRootInputRaw() {
TChain* inputChain = RootInput::getInstance()->GetChain();
inputChain->SetBranchStatus("PISTA", true );
inputChain->SetBranchAddress("PISTA", &m_EventData );
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::InitializeRootInputPhysics() {
TChain* inputChain = RootInput::getInstance()->GetChain();
inputChain->SetBranchAddress("PISTA", &m_EventPhysics);
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::InitializeRootOutput() {
TTree* outputTree = RootOutput::getInstance()->GetTree();
outputTree->Branch("PISTA", "TPISTAPhysics", &m_EventPhysics);
}
////////////////////////////////////////////////////////////////////////////////
// Construct Method to be pass to the DetectorFactory //
////////////////////////////////////////////////////////////////////////////////
NPL::VDetector* TPISTAPhysics::Construct() {
return (NPL::VDetector*) new TPISTAPhysics();
}
////////////////////////////////////////////////////////////////////////////////
// Registering the construct method to the factory //
////////////////////////////////////////////////////////////////////////////////
extern "C"{
class proxy_PISTA{
public:
proxy_PISTA(){
NPL::DetectorFactory::getInstance()->AddToken("PISTA","PISTA");
NPL::DetectorFactory::getInstance()->AddDetector("PISTA",TPISTAPhysics::Construct);
}
};