Newer
Older
/*****************************************************************************
* Copyright (C) 2009-2013 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Adrien MATTA contact address: matta@ipno.in2p3.fr *
* *
* Creation Date : November 2012 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class describe the Tiara Silicon array *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
*****************************************************************************/
// C++ headers
#include <sstream>
#include <cmath>
#include <limits>
//G4 Geometry object
#include "G4Box.hh"
#include "G4Tubs.hh"
#include "G4ExtrudedSolid.hh"
#include "G4TwoVector.hh"
//G4 sensitive
#include "G4SDManager.hh"
//G4 various object
#include "G4MaterialTable.hh"
#include "G4Element.hh"
#include "G4ElementTable.hh"
#include "G4Transform3D.hh"
#include "G4PVPlacement.hh"
#include "G4Colour.hh"
#include "G4PVDivision.hh"
#include "G4SubtractionSolid.hh"
// NPS
#include "Tiara.hh"
// NPL
#include "NPOptionManager.h"
//#include "TiaraScorers.hh"
#include "RootOutput.h"
using namespace TIARA;
// CLHEP header
#include "CLHEP/Random/RandGauss.h"
using namespace std;
using namespace CLHEP;
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
Tiara::Tiara(){
m_EventBarrel = new TTiaraBarrelData();
m_EventHyball = new TTiaraHyballData();
// Dark Grey
SiliconVisAtt = new G4VisAttributes(G4Colour(0.3, 0.3, 0.3)) ;
// Green
PCBVisAtt = new G4VisAttributes(G4Colour(0.2, 0.5, 0.2)) ;
// Gold Yellow
PADVisAtt = new G4VisAttributes(G4Colour(0.5, 0.5, 0.2)) ;
// Light Grey
FrameVisAtt = new G4VisAttributes(G4Colour(0.5, 0.5, 0.5)) ;
// Light Blue
GuardRingVisAtt = new G4VisAttributes(G4Colour(0.0, 0.8, 0.9)) ;
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
Tiara::~Tiara(){
delete m_MaterialSilicon;
delete m_MaterialAl;
delete m_MaterialVacuum;
delete m_MaterialPCB;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Virtual Method of VDetector class
// Read stream at Configfile to pick-up parameters of detector (Position,...)
// Called in DetecorConstruction::ReadDetextorConfiguration Method
void Tiara::ReadConfiguration(string Path){
/* ifstream ConfigFile ;
ConfigFile.open(Path.c_str()) ;
string LineBuffer ;
string DataBuffer ;
while (!ConfigFile.eof()){
int VerboseLevel = NPOptionManager::getInstance()->GetVerboseLevel();
getline(ConfigFile, LineBuffer);
// cout << LineBuffer << endl;
if (LineBuffer.compare(0, 5, "Tiara") == 0)
ReadingStatus = true;
while (ReadingStatus && !ConfigFile.eof()) {
ConfigFile >> DataBuffer ;
// Comment Line
if (DataBuffer.compare(0, 1, "%") == 0) { ConfigFile.ignore ( std::numeric_limits<std::streamsize>::max(), '\n' );}
// Tiara Chamber
if (DataBuffer=="TiaraChambe="){
if(VerboseLevel==1) G4cout << "///" << G4endl ;
if(VerboseLevel==1) G4cout << "Chamber Found:: " << G4endl ;
bool bool_Chamber;
ConfigFile >> bool_Chamber;
}
// Barrel case
else if (DataBuffer=="TiaraBarrel"){
if(VerboseLevel==1) G4cout << "///" << G4endl ;
if(VerboseLevel==1) G4cout << "Barrel found: " << G4endl ;
// ReadingStatusBOX = true ;
}
// Hyball case
else if (DataBuffer=="TiaraHyball")
if(VerboseLevel==1) G4cout << "///" << G4endl ;
if(VerboseLevel==1) G4cout << "Hyball found: " << G4endl ;
}
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Construct detector and inialise sensitive part.
// Called After DetecorConstruction::AddDetector Method
void Tiara::ConstructDetector(G4LogicalVolume* world){
ConstructInnerBarrel(world);
ConstructOuterBarrel(world);
ConstructHyball(world);
// Read sensitive part and fill the Root tree.
// Called at in the EventAction::EndOfEventAvtion
void Tiara::ReadSensitive(const G4Event* event){
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void Tiara::InitializeScorers(){
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void Tiara::InitializeRootOutput(){
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void Tiara::ConstructInnerBarrel(G4LogicalVolume* world){
// Tiara Barrel
// The Barrel is made of 8 identical resistive strip detector
// The PCB is made from a G4ExtrudeSolid, because it has beveled edge
// the pcb is a substracted volume
// the wafer goes into the hole, but a 15mm part is still covered by some PCB
// the whole things is design so the local reference is the one of the wafer
// Start by making a full pcb
// We start by the definition of the point forming a PCB cross section
vector<G4TwoVector> PCBCrossSection;
double l1 = INNERBARREL_PCB_Thickness*0.5/tan(INNERBARREL_PCB_Bevel1_Theta);
double l2 = INNERBARREL_PCB_Thickness*0.5/tan(INNERBARREL_PCB_Bevel2_Theta);
PCBCrossSection.push_back(G4TwoVector(INNERBARREL_PCB_Width/2.-l2,-INNERBARREL_PCB_Thickness*0.5));
PCBCrossSection.push_back(G4TwoVector(INNERBARREL_PCB_Width/2.,0));
PCBCrossSection.push_back(G4TwoVector(INNERBARREL_PCB_Width/2.-l1,INNERBARREL_PCB_Thickness*0.5));
PCBCrossSection.push_back(G4TwoVector(-INNERBARREL_PCB_Width/2.+l1,INNERBARREL_PCB_Thickness*0.5));
PCBCrossSection.push_back(G4TwoVector(-INNERBARREL_PCB_Width/2.,0));
PCBCrossSection.push_back(G4TwoVector(-INNERBARREL_PCB_Width/2.+l2,-INNERBARREL_PCB_Thickness*0.5));
G4ExtrudedSolid* PCBFull =
new G4ExtrudedSolid("PCBFull",
PCBCrossSection,
INNERBARREL_PCB_Length/2.,
G4TwoVector(0,0),1,
G4TwoVector(0,0),1);
// A box having Wafer dimension but thicker than the PCB
// Will be used to remove material from the PCB to have space for the wafer
// Calculate the hole shift within the PCB
G4ThreeVector HoleShift = G4ThreeVector(
0,
0,
INNERBARREL_PCB_Offset-(INNERBARREL_PCB_Length/2-INNERBARREL_PCB_HoleLength/2));
G4Box* HoleShape = new G4Box("HoleShape",
INNERBARREL_ActiveWafer_Width/2.,
INNERBARREL_PCB_Thickness/2.+0.1*mm,
INNERBARREL_PCB_HoleLength/2.);
G4Box* WaferShape = new G4Box("WaferShape",
INNERBARREL_InertWafer_Width/2.,
INNERBARREL_PCB_Thickness/2.,
INNERBARREL_InertWafer_Length/2.);
G4Box* InertWaferFull = new G4Box("InertWaferFull",
INNERBARREL_InertWafer_Width/2.,
INNERBARREL_ActiveWafer_Thickness/2.,
INNERBARREL_InertWafer_Length/2.);
G4Box* ActiveWafer = new G4Box("ActiveWafer",
INNERBARREL_ActiveWafer_Width/2.,
INNERBARREL_ActiveWafer_Thickness/2.,
INNERBARREL_ActiveWafer_Length/2.);
G4Box* ActiveWaferShape = new G4Box("ActiveWaferShape",
INNERBARREL_ActiveWafer_Width/2.,
INNERBARREL_PCB_Thickness/2.,
INNERBARREL_ActiveWafer_Length/2.);
// Substracting the hole Shape from the Stock PCB
G4SubtractionSolid* PCB_1 = new G4SubtractionSolid("PCB_1", PCBFull, HoleShape,
new G4RotationMatrix,HoleShift);
// Substracting the wafer space from the Stock PCB
G4SubtractionSolid* PCB = new G4SubtractionSolid("PCB", PCB_1, WaferShape,
new G4RotationMatrix,
G4ThreeVector(0,INNERBARREL_PCB_Thickness/2.-INNERBARREL_PCB_WaferDepth,0));
// Substract active part from inert part of the Wafer
G4SubtractionSolid* InertWafer = new G4SubtractionSolid("InertWafer", InertWaferFull, ActiveWaferShape,
new G4RotationMatrix,
G4ThreeVector(0,0,0));
// Master Volume that encompass everything else
G4LogicalVolume* logicBarrelDetector =
new G4LogicalVolume(PCBFull,m_MaterialVacuum,"logicBoxDetector", 0, 0, 0);
logicBarrelDetector->SetVisAttributes(G4VisAttributes::Invisible);
// Sub Volume PCB
G4LogicalVolume* logicPCB =
new G4LogicalVolume(PCB,m_MaterialPCB,"logicPCB", 0, 0, 0);
logicPCB->SetVisAttributes(PCBVisAtt);
// Sub Volume Wafer
G4LogicalVolume* logicInertWafer =
new G4LogicalVolume(InertWafer,m_MaterialSilicon,"logicInertWafer", 0, 0, 0);
logicInertWafer->SetVisAttributes(GuardRingVisAtt);
G4LogicalVolume* logicActiveWafer =
new G4LogicalVolume(ActiveWafer,m_MaterialSilicon,"logicActiveWafer", 0, 0, 0);
logicActiveWafer->SetVisAttributes(SiliconVisAtt);
// The Distance from target is given by half the lenght of a detector
// plus the length of a detector inclined by 45 deg.
G4double DistanceFromTarget = INNERBARREL_PCB_Width*(0.5+sin(45*deg)) ;
for( unsigned int i = 0; i < 8; i ++){
// Place the sub volumes in the master volume
// Last argument is the detector number, used in the scorer to get the
// revelant information
new G4PVPlacement(new G4RotationMatrix(0,0,0),
G4ThreeVector(0,0,0),
logicPCB,"Tiara_Barrel_PCB",logicBarrelDetector,
false,i+1);
G4ThreeVector WaferPosition(0,0.5*(INNERBARREL_PCB_Thickness-INNERBARREL_PCB_WaferDepth+INNERBARREL_ActiveWafer_Thickness),0);
new G4PVPlacement(new G4RotationMatrix(0,0,0),
WaferPosition,
logicActiveWafer,"Barrel_Wafer",
logicBarrelDetector,false,i+1);
new G4PVPlacement(new G4RotationMatrix(0,0,0),
WaferPosition,
logicInertWafer,"Barrel_Wafer_GuardRing",
logicBarrelDetector,false,i+1);
// The following build the barrel, with detector one at the top
// and going clowise looking upstrea
// Detector are rotate by 45deg with each other
G4RotationMatrix* DetectorRotation =
new G4RotationMatrix(0*deg,0*deg,i*45*deg);
// There center is also rotated by 45deg
G4ThreeVector DetectorPosition(0,DistanceFromTarget,0);
DetectorPosition.rotate(i*45*deg,G4ThreeVector(0,0,-1));
// Place the Master volume with its two daugther volume at the final place
new G4PVPlacement(G4Transform3D(*DetectorRotation,DetectorPosition),
logicBarrelDetector,"Tiara_Barrel_Detector",
world,false,i+1);
}
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void Tiara::ConstructOuterBarrel(G4LogicalVolume* world){
// Tiara Outer Barrel
// The outer Barrel is identical to the inner barrel but wider in terms of
// geometry. It feature four non resistive strip on the front face
// Start by making a full pcb
// We start by the definition of the point forming a PCB cross section
vector<G4TwoVector> PCBCrossSection;
double l1 = OUTERBARREL_PCB_Thickness*0.5/tan(OUTERBARREL_PCB_Bevel1_Theta);
double l2 = OUTERBARREL_PCB_Thickness*0.5/tan(OUTERBARREL_PCB_Bevel2_Theta);
PCBCrossSection.push_back(G4TwoVector(OUTERBARREL_PCB_Width/2.-l2,-OUTERBARREL_PCB_Thickness*0.5));
PCBCrossSection.push_back(G4TwoVector(OUTERBARREL_PCB_Width/2.,0));
PCBCrossSection.push_back(G4TwoVector(OUTERBARREL_PCB_Width/2.-l1,OUTERBARREL_PCB_Thickness*0.5));
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
PCBCrossSection.push_back(G4TwoVector(-OUTERBARREL_PCB_Width/2.+l1,OUTERBARREL_PCB_Thickness*0.5));
PCBCrossSection.push_back(G4TwoVector(-OUTERBARREL_PCB_Width/2.,0));
PCBCrossSection.push_back(G4TwoVector(-OUTERBARREL_PCB_Width/2.+l2,-OUTERBARREL_PCB_Thickness*0.5));
G4ExtrudedSolid* PCBFull =
new G4ExtrudedSolid("PCBFull",
PCBCrossSection,
OUTERBARREL_PCB_Length/2.,
G4TwoVector(0,0),1,
G4TwoVector(0,0),1);
// A box having Wafer dimension but thicker than the PCB
// Will be used to remove material from the PCB to have space for the wafer
// Calculate the hole shift within the PCB
G4ThreeVector HoleShift = G4ThreeVector(
0,
0,
OUTERBARREL_PCB_Offset-(OUTERBARREL_PCB_Length/2-OUTERBARREL_PCB_HoleLength/2));
G4Box* HoleShape = new G4Box("HoleShape",
OUTERBARREL_ActiveWafer_Width/2.,
OUTERBARREL_PCB_Thickness/2.+0.1*mm,
OUTERBARREL_PCB_HoleLength/2.);
G4Box* WaferShape = new G4Box("WaferShape",
OUTERBARREL_InertWafer_Width/2.,
OUTERBARREL_PCB_Thickness/2.,
OUTERBARREL_InertWafer_Length/2.);
// The Silicon Wafer itself
G4Box* InertWaferFull = new G4Box("InertWaferFull",
OUTERBARREL_InertWafer_Width/2.,
OUTERBARREL_ActiveWafer_Thickness/2.,
OUTERBARREL_InertWafer_Length/2.);
G4Box* ActiveWafer = new G4Box("ActiveWafer",
OUTERBARREL_ActiveWafer_Width/2.,
OUTERBARREL_ActiveWafer_Thickness/2.,
OUTERBARREL_ActiveWafer_Length/2.);
G4Box* ActiveWaferShape = new G4Box("ActiveWaferShape",
OUTERBARREL_ActiveWafer_Width/2.,
OUTERBARREL_PCB_Thickness/2.,
OUTERBARREL_ActiveWafer_Length/2.);
// Substracting the hole Shape from the Stock PCB
G4SubtractionSolid* PCB_1 = new G4SubtractionSolid("PCB_1", PCBFull, HoleShape,
new G4RotationMatrix,HoleShift);
// Substracting the wafer space from the Stock PCB
G4SubtractionSolid* PCB = new G4SubtractionSolid("PCB", PCB_1, WaferShape,
new G4RotationMatrix,
G4ThreeVector(0,OUTERBARREL_PCB_Thickness/2.-OUTERBARREL_PCB_WaferDepth,0));
// Substract active part from inert part of the Wafer
G4SubtractionSolid* InertWafer = new G4SubtractionSolid("InertWafer", InertWaferFull, ActiveWaferShape,
new G4RotationMatrix,
G4ThreeVector(0,0,0));
// Master Volume that encompass everything else
G4LogicalVolume* logicBarrelDetector =
new G4LogicalVolume(PCBFull,m_MaterialVacuum,"logicBoxDetector", 0, 0, 0);
logicBarrelDetector->SetVisAttributes(G4VisAttributes::Invisible);
// Sub Volume PCB
G4LogicalVolume* logicPCB =
new G4LogicalVolume(PCB,m_MaterialPCB,"logicPCB", 0, 0, 0);
logicPCB->SetVisAttributes(PCBVisAtt);
// Sub Volume Wafer
G4LogicalVolume* logicInertWafer =
new G4LogicalVolume(InertWafer,m_MaterialSilicon,"logicInertWafer", 0, 0, 0);
logicInertWafer->SetVisAttributes(GuardRingVisAtt);
G4LogicalVolume* logicActiveWafer =
new G4LogicalVolume(ActiveWafer,m_MaterialSilicon,"logicActiveWafer", 0, 0, 0);
logicActiveWafer->SetVisAttributes(SiliconVisAtt);
// The Distance from target is given by half the lenght of a detector
// plus the length of a detector inclined by 45 deg.
G4double DistanceFromTarget = OUTERBARREL_PCB_Width*(0.5+sin(45*deg)) ;
for( unsigned int i = 0; i < 8; i ++){
// Place the sub volumes in the master volume
// Last argument is the detector number, used in the scorer to get the
// revelant information
new G4PVPlacement(new G4RotationMatrix(0,0,0),
G4ThreeVector(0,0,0),
logicPCB,"Tiara_Barrel_PCB",logicBarrelDetector,
false,i+1);
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
G4ThreeVector WaferPosition(0,0.5*(OUTERBARREL_PCB_Thickness-OUTERBARREL_PCB_WaferDepth+OUTERBARREL_ActiveWafer_Thickness),0);
new G4PVPlacement(new G4RotationMatrix(0,0,0),
WaferPosition,
logicActiveWafer,"Barrel_Wafer",
logicBarrelDetector,false,i+1);
new G4PVPlacement(new G4RotationMatrix(0,0,0),
WaferPosition,
logicInertWafer,"Barrel_Wafer_GuardRing",
logicBarrelDetector,false,i+1);
// The following build the barrel, with detector one at the top
// and going clowise looking upstrea
// Detector are rotate by 45deg with each other
G4RotationMatrix* DetectorRotation =
new G4RotationMatrix(0*deg,0*deg,i*45*deg);
// There center is also rotated by 45deg
G4ThreeVector DetectorPosition(0,DistanceFromTarget,0);
DetectorPosition.rotate(i*45*deg,G4ThreeVector(0,0,-1));
// Place the Master volume with its two daugther volume at the final place
new G4PVPlacement(G4Transform3D(*DetectorRotation,DetectorPosition),
logicBarrelDetector,"Tiara_Barrel_Detector",
world,false,i+1);
}
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void Tiara::ConstructHyball(G4LogicalVolume* world){
// TO BE DONE //
// Put the needed geometry parameter definition here instead of the namespace
// to facilitate the merge
// Respect Naming convention: example HYBALL_PCB_Radius / HYBALL_ActiveWafer_Radius
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void Tiara::ConstructChamber(G4LogicalVolume* world){
// Vaccum Chamber of Tiara
// The chamber is made of a central cylinder surrounding the barrel Si
// Two Cone that expeand out of the central cylinder to let room for Exogam
// Two outer cylinder surrounding Hyball
// Hyball is hold on a back plate that close the Diabolo Shaped Chamber
// Material to be moved in a Material Function //
// Al
G4double density = 2.702*g/cm3;
G4double a = 26.98*g/mole;
G4Material* Aluminium = new G4Material("Aluminium", 13., a, density);
// Making the Chamber //
// We make the individual pieces, starting from the inside to the outside
// Then we merge them together using the a G4AdditionSolid
// The whole chamber is then placed
// Central Tube
G4Tubs* solidCentralTube =
new G4Tubs("TiaraChamberCentralTube",CHAMBER_CentralTube_Inner_Radius,
CHAMBER_CentralTube_Outer_Radius,CHAMBER_CentralTube_Length/2.,
0*deg,360*deg);
// Forward-Backward Cones
G4Cons* solidOuterCone =
new G4Cons("TiaraChamberOuterCone",CHAMBER_CentralTube_Inner_Radius,
CHAMBER_CentralTube_Outer_Radius,CHAMBER_OuterCylinder_Inner_Radius,
CHAMBER_OuterCylinder_Outer_Radius,CHAMBER_OuterCone_Length/2.,
0*deg,360*deg);
// Outer Cylinder
G4Tubs* solidOuterCylinder =
new G4Tubs("TiaraChamberOuterCylinder",CHAMBER_OuterCylinder_Inner_Radius,
CHAMBER_OuterCylinder_Outer_Radius,CHAMBER_OuterCylinder_Length/2.,
0*deg,360*deg);
// Add the volume together
G4UnionSolid* solidTiaraChamberStep1 =
new G4UnionSolid("TiaraChamber", solidCentralTube, solidOuterCone,
new G4RotationMatrix,
G4ThreeVector(0,0,CHAMBER_OuterCone_Z_Pos));
G4UnionSolid* solidTiaraChamberStep2 =
new G4UnionSolid("TiaraChamber", solidTiaraChamberStep1, solidOuterCone,
new G4RotationMatrix(0,180*deg,0),
G4ThreeVector(0,0,-CHAMBER_OuterCone_Z_Pos));
G4UnionSolid* solidTiaraChamberStep3 =
new G4UnionSolid("TiaraChamber", solidTiaraChamberStep2, solidOuterCylinder,
new G4RotationMatrix,
G4ThreeVector(0,0,CHAMBER_OuterCylinder_Z_Pos));
G4UnionSolid* solidTiaraChamberStep4 =
new G4UnionSolid("TiaraChamber", solidTiaraChamberStep3, solidOuterCylinder,
new G4RotationMatrix,
G4ThreeVector(0,0,-CHAMBER_OuterCylinder_Z_Pos));
// Create Logic Volume
G4LogicalVolume* logicTiaraChamber =
new G4LogicalVolume(solidTiaraChamberStep4,Aluminium,"logicTiaraChamber", 0, 0, 0);
// Visual Attribute
G4VisAttributes* ChamberVisAtt
= new G4VisAttributes(G4Colour(0.0,0.4,0.5));
ChamberVisAtt->SetForceWireframe(true);
ChamberVisAtt->SetForceAuxEdgeVisible (true);
logicTiaraChamber->SetVisAttributes(ChamberVisAtt);
// Place the whole chamber
new G4PVPlacement(new G4RotationMatrix(0,0,0), G4ThreeVector(0,0,0),
logicTiaraChamber,"TiaraChamber",world,false,0);
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void Tiara::InitializeMaterial(){
G4Element* H = new G4Element("Hydrogen" , "H" , 1 , 1.015 * g / mole);
G4Element* C = new G4Element("Carbon" , "C" , 6 , 12.011 * g / mole);
G4Element* N = new G4Element("Nitrogen" , "N" , 7 , 14.01 * g / mole);
G4Element* O = new G4Element("Oxygen" , "O" , 8 , 15.99 * g / mole);
G4double a, z, density;
// Si
a = 28.0855 * g / mole;
density = 2.321 * g / cm3;
m_MaterialSilicon = new G4Material("Si", z = 14., a, density);
// Al
density = 2.702 * g / cm3;
a = 26.98 * g / mole;
m_MaterialAl = new G4Material("Al", z = 13., a, density);
// PCB (should be FR-4, I took Epoxy Molded from LISE++)
density = 1.85 * g / cm3;
m_MaterialPCB = new G4Material("PCB", density, 3);
m_MaterialPCB->AddElement(H, .475);
m_MaterialPCB->AddElement(C, .45);
m_MaterialPCB->AddElement(O, .075);
// Vacuum
density = 0.000000001 * mg / cm3;
m_MaterialVacuum = new G4Material("Vacuum", density, 2);
m_MaterialVacuum->AddElement(N, .7);
m_MaterialVacuum->AddElement(O, .3);
}