Skip to content
Snippets Groups Projects
CutAutoDEE_FineTuning.C 25.3 KiB
Newer Older
#include <numeric>
#include <set>
#include <iostream>
#include <unordered_map>

// Important variable
#define STEP  2;        // Step to parse through the histogram in X
#define BINSIZE 10;    // Size of the bin in X on which to projectY the plot
#define THRESHOLDY 75.0;
#define THRESHOLDX 200.0;

//Main

    // Retrieve initial histogram
    TFile *inFile = new TFile("Output/DE_E_merged.root","read");
    TH2F *hDE_E = (TH2F*)inFile->Get("DE_E");
    // Inverse data to use tspectrum
    for (int xBin=1; xBin<= hDE_E->GetNbinsX();xBin++){
        for (int yBin=1; yBin<= hDE_E->GetNbinsY();yBin++){
        hDE_E->SetBinContent(xBin,yBin , -hDE_E->GetBinContent(xBin,yBin) );
        }
    }

    //Store result of peak finding
    //This is not a good way to do this : We should normalize the structure of the code by
    //directly using a PeakData class to store each of the peak.
    vector<int> *vPeaks = new vector<int>() ;
    vector<TSpectrum*> *vPeakFinder = new vector<TSpectrum*>();
    vector<vector<Double_t>> *LinePos = new vector<vector<Double_t>> ;

    // Tspectrum used to find the peak : If you have problem with peak finding
    // adjust the setting in this function 
    // Step and Binsize are used in this function
    Double_t sigma = 3;
    Double_t threshold = 0.0001;
    PeakFinder(vPeakFinder,vPeaks,hDE_E,LinePos,sigma,threshold);


    // Link the peak, this is where the most critical variable are.
    // Specifically the maximum distance between each peak and the minimum number of peak in a line 
    vector<TCutG*> CutLine =  PeakLinker(LinePos);

    // Inverse data for plotting
    for (int xBin=1; xBin<= hDE_E->GetNbinsX();xBin++){
        for (int yBin=1; yBin<= hDE_E->GetNbinsY();yBin++){
        hDE_E->SetBinContent(xBin,yBin , -hDE_E->GetBinContent(xBin,yBin));
        }
    }
    
    //Plot
    gStyle->SetPalette(kRainBow);
    TCanvas* c2 = new TCanvas("c2","c2");
    hDE_E->Draw("colz");

    TCanvas* c3 = new TCanvas("c3","c3");
    hDE_E->Draw("colz");
    for (auto cut : CutLine){
        cut->Draw("SAME");
    }
    
    //Save the cut !
    TFile *ofile = new TFile("Output/CutAutoZtest.root","RECREATE");
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
    for (auto cut : CutLine){
        cut->Write();
    }
    ofile->Close();
}

/** 
  *  Find the peak of an histogram by subdivinding the histogram on it's x axis.
  *  Store the number of peak and their position in different vector
  *
  *  input and Output:
  *     vector<TSpectrum*> *sPeak : Vector of TSpectrum to output
  *     vector<int> *vPeak        : Vector of number of peak for each bin range
  *     vector<vector<Double_t>> *LinePos : Vector of position of each peak for each bin range 
  */
void PeakFinder(vector<TSpectrum*> *sPeak , vector<int> *vPeak, TH2F *h, vector<vector<Double_t>> *LinePos, Double_t sigma, Double_t threshold){

    // Initialising
    int nbinsX = h->GetNbinsX();
    int iter = 0;
    int stepParsing = STEP;
    int SizeBin = BINSIZE;

    // Looping on the histogram x axis.
    for (int i = 1; i <= nbinsX; i += stepParsing) {

        // Limit in binnumber
        iter +=1;
        int x1 = i;
        int x2 = std::min(i + SizeBin - 1, nbinsX);

        // Projection on Y between the binnumber
        TString projName = Form("projY_%d_to_%d", x1, x2);
        TH1D* projY = h->ProjectionY(projName, x1, x2);
        projY->SetTitle(Form("Projection Y: bins %d to %d", x1, x2));

        // PeakFinder
		TSpectrum *PeakFinder = new TSpectrum(600); 
		int nPeaks = PeakFinder->Search(projY,sigma,"",threshold);
      
        //Store npeaks and tspectrum
        vPeak->push_back(nPeaks); // number of peak for this bin range
        sPeak->push_back(PeakFinder);

        //Save the position of each peak
        Double_t * x = PeakFinder->GetPositionX();
        
        for(int peaks = 0 ; peaks < nPeaks ; peaks++){
            vector<Double_t> Position(2); 
            Position.at(0) = (double(i) + double(SizeBin)/2.0) * h->GetXaxis()->GetBinWidth(4) ; //Retrieve E position as the center
                                                                                              //of the bin
            Position.at(1) = PeakFinder->GetPositionX()[peaks]; // Position in DE
            LinePos->push_back(Position);
        }


        //Test
        if (true && iter ==50){
            // Draw the histogram
            TCanvas* c = new TCanvas(Form("c%d",i), Form("Histogram with E = %f",(h->GetXaxis()->GetBinCenter(i))), 800, 600);
            projY->Draw();
        }

    }
}

/** 
  *  Link the different point to create TCUT from the peak found previously
  *  To do so a max range is given and then all point separated by a distance inferior to it are linked.
  *
  *  Input :
  *     vec<vec<Double>> *LinePos : pointer to a vector of length number of peak holding position in x and y for each peak
  *  Output:
  *    TCUTG : a cut for each charge in vamos
  */
vector<TCutG*> PeakLinker(vector<vector<Double_t>> *LinePos){

    //Retrieve position of peaks
    vector<Double_t> X , Y ;
    for (int ipeak = 0; ipeak<LinePos->size() ; ipeak ++){
        X.push_back(LinePos->at(ipeak).at(0));  
        Y.push_back(LinePos->at(ipeak).at(1));
    }

    //===========================================================================================================
    //                             1. Find the threshold between two point
    //===========================================================================================================
  
    // Find the distance between two point in X.
    //Sort the vec
    vector<Double_t> XSub(X); 
    sort(XSub.begin(),XSub.end());    

	//Take only the unique element 
    set<Double_t> SetX(XSub.begin() , XSub.end());
    vector<Double_t> XThresh ;
    for (Double_t elem : SetX) {
        XThresh.push_back(elem);
    } 

	//Find the average dist in X
    vector<Double_t> DiffX = diff(XThresh);
    Double_t ThresholdXestim ;
    Double_t ThresholdX ;
	for (int i =0 ; i<DiffX.size() ; i++) { ThresholdXestim += DiffX.at(i);}
	ThresholdXestim = ThresholdXestim / DiffX.size();	


    // In Y the threshold is not easily findable, However it's critical that the threshold 
    // is superior to the average distance in X. If not line can't be found by construction
    // The threshold should also be inferior to the distance between each line in Y
    // To do so adjust the bin STEP at the beginning of the code.

    //Very important set
    ThresholdX = THRESHOLDX;
    Double_t ThresholdY = THRESHOLDY;
    cout << "Threshold X : "  << ThresholdX  << endl;
    cout << "Threshold X approx : "  << ThresholdXestim  << endl;
    cout <<   "N of X "       << SetX.size() << endl;
    cout << "ThresholdY " << ThresholdY << endl;

    //===========================================================================================================
    //                                           2.LINK POINT
    //===========================================================================================================
   
    // Now that the threshold is found we will link the point by comparing each point 
    // Notice that if two point have the same X they can't be linked 

    // Create a vector holding the id of each peak
    int ID = 0 ; // Initial Id of the first line
    vector<int> vID(LinePos->size(), -1000);

    // We want to loop on the UNIDENTIFIED peak.
    for (int ipeak = 0 ; ipeak < LinePos->size() ; ipeak ++){

        //Here do ID manipulation
        //Create a set of ID without the unidentified peak
        set<int> SetId(vID.begin() , vID.end());
        if (SetId.size() > 1 ) {SetId.erase(-1000) ;  ID = *prev(SetId.end()) + 1 ;}

        //If the current peak is identified set newID to it's ID
        if (vID.at(ipeak) != -1000) ID = vID.at(ipeak); // If the point is identified propagate it!

        Double_t XPosPeak = LinePos->at(ipeak).at(0);
        Double_t YPosPeak = LinePos->at(ipeak).at(1);


        // Parse through all the next peak
        // This could be done faster by sorting the list by X and Y before and stoping after a threshold
        // For now it'll do just fine
        for (int ipeakCompare = ipeak + 1  ; ipeakCompare < LinePos->size() ; ipeakCompare ++){
           
            if ((vID.at(ipeakCompare) != -1000) || (XPosPeak == LinePos->at(ipeakCompare).at(0)))  continue; // If the point is identified skip it !
            
            //Calculate the distance between the two peak
            Double_t XPosPeakComp = LinePos->at(ipeakCompare).at(0);
            Double_t YPosPeakComp = LinePos->at(ipeakCompare).at(1);
            Double_t dist = sqrt( pow(abs(XPosPeak-XPosPeakComp),2) +  pow(abs(YPosPeak-YPosPeakComp),2) );
            Double_t distX = sqrt( pow(abs(XPosPeak-XPosPeakComp),2) );
            Double_t distY = sqrt(  pow(abs(YPosPeak-YPosPeakComp),2) );

            //If the distance is inferior to the threshold then set both ID to the new one !
            if ((distX < ThresholdX )&& (distY <ThresholdY )) {
                vID.at(ipeak) = ID ;
                vID.at(ipeakCompare) = ID ;                    
            } // end threshold if 
        } // end compare
    }   // end loop peak

    //Check if needed
    /*
       for (int i=0 ; i<vID.size() ; i++){
       if (vID.at(i)!=-1000){
       cout << vID.at(i) << " , ";
       }
       }
       */




    // Here we flush all the id that have less element than a threshold value
    //===========================================================================================================
    //                                 3. Flush line with not enough value
    //===========================================================================================================
   
    //This is a pretty sensitive variable 
    int MinElem = SetX.size()/4;
    cout << "Min Elem " << MinElem << endl ;


    set<int> SetIdTemp(vID.begin() , vID.end());
    for (int Id : SetIdTemp){
        int NId = 0 ;
        for (int ipeak = 0 ; ipeak < vID.size() ; ipeak ++) {
            if (vID.at(ipeak) == Id) NId += 1 ;
        }
        if ( NId < MinElem ) {

            for (int ipeak = 0 ; ipeak < vID.size() ; ipeak ++) {
                if (vID.at(ipeak) == Id) vID.at(ipeak) = -1000 ;
            }

        }
    }

    //===========================================================================================================
    //                                    4. TCutG Creator
    //===========================================================================================================

    // We now have identified each peak to a id that correspond to a line in the DE E
    // Now we need to link the ADJACENT line and then transform those point into tcutg

    set<int> SetId(vID.begin() , vID.end()); // This is all the unique element of vID 
    vector<int> IndexPeak(LinePos->size());
    for (int ipeak = 0 ; ipeak < LinePos->size() ; ipeak ++){
        IndexPeak.at(ipeak) = ipeak ;
    }

    //===========================================================================================================
    //                      4.1 Sort by id
    //===========================================================================================================
    // The next part of the code SHOULD sort by meanY but does not.
    // It therefore only serve as a convoluted way to sort by ID.
    // We need to sort by id either way so no need to rewrite i
    
    vector<Double_t> MeanYId(SetId.size()) ;
    vector<Double_t> NelemYId(SetId.size()) ;

    //Loop on the element of the set
    for (int Id = 0 ; Id < SetId.size() ; Id ++){
        Double_t Sum = 0 , Npeak = 1;
        auto itSet = SetId.begin();
        advance(itSet,Id);

        //Loop on all the peak
        for (int ipeak = 0 ; ipeak < LinePos->size() ; ipeak ++){

            // If the ID of the peak correspond to one of the set then increment his Y and NPeak value
            if (vID.at(ipeak) == *itSet )
            {
                Npeak += 1 ; 
                Sum += LinePos->at(ipeak).at(1);
            } // End if Id 
        } // Loop on Peak

        NelemYId.at(Id) = Npeak ;
        MeanYId.at(Id) = Sum /Npeak ;
        // cout << Id << "  " << MeanYId.at(Id) << endl;
    } // Loop on Id

    //Now we will sort the MeanY vector and return a vector holding the ID sorted 
    vector<size_t> IndexMeanY(MeanYId.size());
    iota(IndexMeanY.begin(),IndexMeanY.end(),0);
    sort(IndexMeanY.begin(),IndexMeanY.end() , [&](size_t i, size_t j) {
            return MeanYId.at(i) < MeanYId.at(j);
            });

    // Now we have to sort the SetId according to this index ordering
    // Since set can't be sorted we need to copy it to a vector
    vector<int> vSetId(SetId.begin(), SetId.end());
    vector<int> SortedSetId(SetId.begin(), SetId.end());
    for (int Index = 0  ; Index < IndexMeanY.size() ; Index ++){ SortedSetId.at(IndexMeanY.at(Index)) = vSetId.at(Index) ;}

    /*
       cout << endl << " SORTED" <<endl ; 
       for (int i = 0 ; i<IndexMeanY.size() ; i++){
       if (IndexMeanY.at(i) == 49 || IndexMeanY.at(i) == 32){
       cout << NelemYId.at(IndexMeanY.at(i)) << endl; 
       }
       cout << IndexMeanY.at(i) << "  " << SortedSetId.at(i) << "   "  << MeanYId.at(IndexMeanY.at(i)) << endl;
       }

       cout << endl << " *********************" <<endl ; 
       */
    
    //===========================================================================================================
    //                         4.2 Recompacting data into a struct
    //===========================================================================================================
    

    // We now have the different lines sorted by Id we just need to link them together by group of two.
    // to do so we will sort each id by x and then link them

    // 1st step is to sort the original IndexPeak according to the MeanY sort
    // To do so we need to sort the vID vector according to meanY and apply this transformation to IndexPeak too

    // vID as the ID of each peak -> correspondance of peak to a line
    // IndexPeak                  -> index of each of these peak of size number of peak
    // SortedSetId                -> Set of sorted ID of peak according to mean y
    
    //Create a map for the sort of ID
    unordered_map<int,int> order_map ;
    for (size_t i = 0 ; i < SortedSetId.size() ; i++  ) {
        order_map[SortedSetId[i]] = i ; 
    }

    // Combine Index and ID into a single vector of pair
    vector<pair<int,int>> PeakId ;       
    for(size_t i = 0 ; i < IndexPeak.size() ; i++){
        PeakId.emplace_back(IndexPeak.at(i), vID.at(i));
    }

    // Sort the PeakId on the custom order of IDs 
    sort(PeakId.begin(), PeakId.end(), [&order_map](const auto& a, const auto& b){
            return order_map[a.second] < order_map[b.second];
            } );

    //2nd step is to take the original Position vector and sort it thanks to PeakId

    vector<vector<Double_t>> LinePosSorted = *LinePos ;

    //Swap LinePosSorted elemn according to Index of PeakID
    for (int i = 0 ; i < PeakId.size() ; i++ ){
        LinePosSorted.at(i) = LinePos->at(PeakId.at(i).first);
    }    

    // 3rd step is to compile x y id and index in one structure

    if (PeakId.size() != LinePos->size() ){
        cerr << "Vector not same size" << endl; 
    }

    vector<PeakData> PeakStruct ;
    for (size_t i=0 ; i<LinePosSorted.size() ; i++){
        PeakData TempPeak = {LinePosSorted.at(i).at(0), LinePosSorted.at(i).at(1) , PeakId.at(i).second , PeakId.at(i).first};
        PeakStruct.push_back(TempPeak);
    }

    //===========================================================================================================
    //                          4.3 Cleanupi and sortY
    //===========================================================================================================
    // We drop all non clustered element and sort the whole struct by the mean value of Y for their ID.

    // 4th step is to drop all element = -1000
    //

    auto groupBegin = find_if(PeakStruct.begin(),PeakStruct.end(),[&](const PeakData& elem){
            return elem.LineId == -1000 ;
            });

    auto groupEnd = find_if(groupBegin,PeakStruct.end(),[&](const PeakData& elem){
            return elem.LineId != -1000 ;
            });

    PeakStruct.erase(groupBegin,groupEnd);

    //4.1 step we will resort by mean y because it didnt work before , probably due to data structure 

    auto ItMeanY = PeakStruct.begin();
    vector<int> SortedId ;
    vector<Indexed2D> MeanY ;
    int index = 0;

    while (ItMeanY != PeakStruct.end()){

        //Get position of end of the current id
        auto IdEnd = find_if(ItMeanY, PeakStruct.end() , [&](const PeakData& elem){
                return elem.LineId != ItMeanY->LineId; 
                });

        // Fill MeanY of the current Id 

        Double_t Sum  = 0;
        Double_t Npts = 0;

        for (auto i = ItMeanY ; i!=IdEnd ; i++){
            Sum += i->Y;        
            Npts += 1;        
        }

        MeanY.push_back({Sum/Npts ,ItMeanY->LineId  , index });

        index +=1;
        ItMeanY = IdEnd;
    }

    // We now have a all the mean Y of each ID and their index
    // Let's now sort the id from this meanY

    sort(MeanY.begin(),MeanY.end(),[&](Indexed2D a , Indexed2D b){
            return a.x < b.x;
            });

    unordered_map<int,size_t> ordered_map ;
    for (size_t i=0 ; i<MeanY.size() ; i++){
        ordered_map[MeanY.at(i).id]=i;
    }


    sort(PeakStruct.begin(),PeakStruct.end(), [&ordered_map](const PeakData& a , const PeakData &b) {
            return ordered_map[a.LineId]<ordered_map[b.LineId];
            });

    //===========================================================================================================
    //              4.4  Sort by X alternating order
    //===========================================================================================================
    // We sort by X in alternating order because a TCutG need the point to be aligned to link them together

    // Iterate and sort groups with the same LineId
    auto it = PeakStruct.begin();// create an iterator that point to the elements of the PeakData
    bool Oddness = true;             // to know in which way sort
    while (it != PeakStruct.end()){

        // Find range where id is the same
        // This return the first iterator where the condition is fulfilled 
        auto groupEnd = find_if(it,PeakStruct.end(),[lineId = it->LineId](const PeakData& elem){
                return elem.LineId != lineId ;
                });

        // Now we sort this whole group by x

        sort(it,groupEnd,[Oddness](const PeakData& a , const PeakData& b){
                if (Oddness) return a.X < b.X ;         
                if (!Oddness) return a.X > b.X ;        
                else return a.X < b.X;
                });

        // Move to next group
        it = groupEnd;
        Oddness = not(Oddness) ;
    }

    // works ! 
    /*
    for (int i : SortedSetId) {cout << i << endl;}

    int tempId= -1000;
    for (PeakData i : PeakStruct) {
        if (tempId != i.LineId  ){
            tempId = i.LineId;
            cout << " Id " << i.LineId << " Y  " << i.Y << endl;
        }
    } 
    */
    //===========================================================================================================
    //              4.5 Create TCut 
    //===========================================================================================================
    // We need to make sublist for each 2 lines

    // We will iterate through our data and create substructure for each adjacent pair of LineID
    // and store them in a vector of TCutG

    vector<TCutG*> Res ;

    it = PeakStruct.begin();
    int iteration = 0;


    while(it != PeakStruct.end()){

        // 1st line
        int LineIdBottom = it->LineId;
        auto BottomLine = find_if(it,PeakStruct.end(), [&] (const PeakData& elem){
                return elem.LineId != LineIdBottom ;
                }) ;

        //2nd line
        int LineIdTop = BottomLine->LineId;
        auto TopLine = find_if(BottomLine,PeakStruct.end(), [&] (const PeakData& elem){
                return elem.LineId != LineIdTop ;
                }) ;

        //cout << LineIdBottom << "  " << LineIdTop << endl;

        // first we need to find the shortest line
        int SizeBottom = distance(it,BottomLine);
        int SizeTop = distance(BottomLine,TopLine);

        //Subvector with the longest line first then the sortest
        vector<PeakData> CutVec;
        vector<PeakData> LongVec;
        vector<PeakData> ShortVec;

        if(SizeBottom >= SizeTop ){
            CutVec.insert(CutVec.end(),it,TopLine);
            LongVec.insert(LongVec.end(),it,BottomLine);
            ShortVec.insert(ShortVec.end(),BottomLine,TopLine);
        }

        else {
            CutVec.insert(CutVec.end(),BottomLine,TopLine);
            CutVec.insert(CutVec.end(),it,BottomLine);
            LongVec.insert(LongVec.end(),BottomLine,TopLine);
            ShortVec.insert(ShortVec.end(),it,BottomLine);
        }
        


        //nbr of point
        int Npoints = CutVec.size(); 
        //Close the loop by finding the closest point to the last one
        int closestIndexLast = 0;
        int closestIndexBegin = LongVec.size()-1;
        int SizeArray = 0;
        if (ShortVec.size() == 0) {
            closestIndexLast = CutVec.size(); 
            SizeArray = CutVec.size();
        }
        else{
            PeakData lastPoint = ShortVec.back();
            double minDistance = distancePeak(lastPoint,LongVec.at(0));
            for (size_t i = 1 ; i < LongVec.size(); i++){
                double dist = distancePeak(lastPoint,LongVec.at(i));
                if(dist<minDistance){
                    minDistance = dist;
                    closestIndexLast = i;
                }
            }
            PeakData firstPoint = ShortVec.at(0);
            double minDistanceFirst = distancePeak(firstPoint,LongVec.at(0));
            for (size_t i = 1 ; i < LongVec.size(); i++){
                double dist = distancePeak(firstPoint,LongVec.at(i));
                if(dist<minDistanceFirst){
                    minDistanceFirst = dist;
                    closestIndexBegin = i;
                }
            }
            SizeArray = ShortVec.size() + (closestIndexBegin - closestIndexLast);
        }
        //Create array to hold position
        double *x = new double[SizeArray + 1 ];
        double *y = new double[SizeArray + 1 ];

        if (SizeTop == 0){

            for(int i = 0 ; i<CutVec.size() ; i++) {
                x[i] = CutVec.at(i).X ;
                y[i] = CutVec.at(i).Y ;
            }
            x[SizeArray ] = CutVec.at(0).X;
            y[SizeArray ] = CutVec.at(0).Y;

        }

        else {
            for(int i = 0 ; i<ShortVec.size() ; i++) {
                x[i] = ShortVec.at(i).X ;
                y[i] = ShortVec.at(i).Y ;
            }

            for(int i = closestIndexLast ; i<=closestIndexBegin ; i++) {
                x[i + ShortVec.size() - closestIndexLast] = LongVec.at(i).X ;
                y[i + ShortVec.size() - closestIndexLast ] = LongVec.at(i).Y ;
            }



            x[SizeArray] = ShortVec.at(0).X;
            y[SizeArray] = ShortVec.at(0).Y;

        }
        //Saving and moving on

        if (Npoints >10 && (TopLine != PeakStruct.end())){ //Dont link last line to itself 
            TCutG* Cut = new TCutG(Form("Cut %d",iteration) , SizeArray+1, x , y);
            Cut->SetLineWidth(2);
            Cut->SetLineColor(kRed);
            Res.push_back(Cut);
        }
        iteration += 1 ;
        it = BottomLine ;
    } // end while

    return Res;
}


vector<Double_t> diff(const vector<Double_t>& input){
    vector<Double_t> result;
    if (input.size() < 2) return result; // Return empty vector if size < 2

    for (size_t i = 1; i < input.size(); ++i) {
        result.push_back(input[i] - input[i - 1]);
    }
    return result;
}

void SortAndRenameTCutG() {
    TIter next(gROOT->GetListOfSpecials());
    std::vector<std::pair<int, TCutG*>> cuts;

    TObject *obj;
    while ((obj = next())) {
        TCutG *cut = dynamic_cast<TCutG*>(obj);
        if (cut) {
            std::string name = cut->GetName();
            if (name.rfind("Cut", 0) == 0) { // Check if name starts with "Cut"
                try {
                    int num = std::stoi(name.substr(3));
                    cuts.emplace_back(num, cut);
                } catch (...) {
                    continue; // Ignore malformed names
                }
            }
        }
    }

    // Sort by extracted number
    std::sort(cuts.begin(), cuts.end(), [](const auto &a, const auto &b) {
            return a.first < b.first;
            });

    // Rename sequentially
    for (size_t i = 0; i < cuts.size(); ++i) {
        cuts[i].second->SetName(Form("Cut %zu", i));
    }

    std::cout << "TCutG objects renamed from original numbering to 0:N.\n";
}
void SaveTCutGToFile() {
    TFile file("Output/CutAutoZ.root", "RECREATE");
    if (!file.IsOpen()) {
        std::cerr << "Error: Could not open Output/CutAutoZ.root for writing.\n";
        return;
    }

    TIter next(gROOT->GetListOfSpecials());
    TObject *obj;
    while ((obj = next())) {
        TCutG *cut = dynamic_cast<TCutG*>(obj);
        if (cut) {
            cut->Write();
        }
    }

    file.Close();
    std::cout << "All TCutG objects saved to Output/CutAutoZ.root.\n";
}

double distancePeak(const PeakData& p1, const PeakData& p2) {
    return abs(p1.X - p2.X);
}