Newer
Older
/*****************************************************************************
* Copyright (C) 2009-2016 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Sandra GIRON contact address: giron@ipno.in2p3.fr *
* Benjamin LE CROM lecrom@ipno.in2p3.fr *
* Creation Date : march 2014 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold exogam treated data *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
*****************************************************************************/
#include "TExogamPhysics.h"
using namespace EXOGAM_LOCAL;
// STL
#include <sstream>
#include <iostream>
#include <cmath>
#include <stdlib.h>
// NPL
#include "RootInput.h"
#include "RootOutput.h"
#include "NPOptionManager.h"
// ROOT
#include "TChain.h"
///////////////////////////////////////////////////////////////////////////
ClassImp(TExogamPhysics)
///////////////////////////////////////////////////////////////////////////
TExogamPhysics::TExogamPhysics()
{
EventMultiplicity = 0 ;
ECC_Multiplicity = 0 ;
GOCCE_Multiplicity = 0 ;
NumberOfHitClover = 0 ;
NumberOfHitCristal = 0 ;
m_Spectra = NULL;
NumberOfClover=0;
PreTreatedData = new TExogamData ;
EventData = new TExogamData ;
EventPhysics = this ;
NumberOfClover = 0 ;
CloverMult = 0 ;
}
///////////////////////////////////////////////////////////////////////////
void TExogamPhysics::BuildSimplePhysicalEvent()
{
BuildPhysicalEvent();
}
///////////////////////////////////////////////////////////////////////////
void TExogamPhysics::PreTreat()
{
Hugo Jacob
committed
/*ClearPreTreatedData();
for(unsigned int i = 0 ; i < EventData -> GetECCEMult(); i++) {
UShort_t cristal_E = 10000 ; UShort_t cristal_T = 2000;
//if(IsValidChannel)
{
int clover = EventData -> GetECCEClover(i);
int cristal = EventData -> GetECCECristal(i);
if(EventData -> GetECCEEnergy(i) < 3000) cristal_E = CalibrationManager::getInstance()-> ApplyCalibration("EXOGAM/Cl"+ NPL::itoa(clover)+"_Cr"+ NPL::itoa(cristal)+"_Elow", EventData -> GetECCEEnergy(i));
else cristal_E = CalibrationManager::getInstance()-> ApplyCalibration("EXOGAM/Cl"+ NPL::itoa(clover)+"_Cr"+ NPL::itoa(cristal)+"_Ehigh", EventData -> GetECCEEnergy(i));
if(cristal_E > Threshold_ECC)
{
PreTreatedData->SetECCEClover ( clover ) ;
PreTreatedData->SetECCECristal( cristal ) ;
PreTreatedData->SetECCEEnergy ( cristal_E ) ;
bool checkT = false;
for(unsigned int k = 0; k < EventData -> GetECCTMult(); k++){
if(clover == EventData -> GetECCTClover(k) && cristal == EventData -> GetECCTCristal(k)){
// cout << EventData -> GetECCTTime(k) << endl;
if(EventData -> GetECCTTime(k) < 16383) cristal_T = CalibrationManager::getInstance()-> ApplyCalibration("EXOGAM/Cl"+ NPL::itoa(clover)+"_Cr"+ NPL::itoa(cristal)+"_T", EventData -> GetECCTTime(k));
else cristal_T = 2500;
//if(cristal_T >5000 && cristal_T !=25000 ) cout << "PreTreat " << cristal_T << " " << EventData -> GetECCTTime(k) << " " << clover << " " << cristal << " " << EventData->GetECCTMult() << endl;
checkT=true;
PreTreatedData->SetECCTClover (clover ) ;
PreTreatedData->SetECCTCristal( cristal ) ;
PreTreatedData->SetECCTTime ( cristal_T ) ;
ECC_Multiplicity ++;
GOCCE_Multiplicity++;
}
if(!checkT) {
PreTreatedData->SetECCTClover (clover ) ;
PreTreatedData->SetECCTCristal( cristal ) ;
PreTreatedData->SetECCTTime ( -1000 ) ;
}
}
}
}
//cout << PreTreatedData-> GetECCTMult() << " " << PreTreatedData-> GetECCEMult() << endl;
//GOCCE
//E
for(unsigned int i = 0 ; i < EventData -> GetGOCCEEMult(); i++) {
UShort_t segment_E = 25000;
//if(IsValidChannel)
{
int clover = EventData -> GetGOCCEEClover(i);
int cristal = EventData -> GetGOCCEECristal(i);
int segment = EventData -> GetGOCCEESegment(i);
if(EventData -> GetGOCCEEEnergy(i) > RawThreshold_GOCCE)
{
segment_E = CalibrationManager::getInstance()->ApplyCalibration("EXOGAM/Cl"+ NPL::itoa(clover)+"_Cr"+ NPL::itoa(cristal)+"_Seg"+ NPL::itoa(segment)+"_E", EventData -> GetGOCCEEEnergy(i));
if(segment_E > Threshold_GOCCE)
{
PreTreatedData->SetGOCCEEClover ( clover ) ;
PreTreatedData->SetGOCCEECristal( cristal ) ;
PreTreatedData->SetGOCCEESegment( segment ) ;
PreTreatedData->SetGOCCEEEnergy ( segment_E ) ;
}
}
else
{
}
}
}
//cout << "EXOGAM pretreat ok!" << endl;
return;
Hugo Jacob
committed
*/
}
///////////////////////////////////////////////////////////////////////////
void TExogamPhysics::BuildPhysicalEvent()
{
Hugo Jacob
committed
/*PreTreat();
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
if(PreTreatedData -> GetECCEMult() != PreTreatedData -> GetECCTMult()) cout << PreTreatedData -> GetECCEMult() << " " << PreTreatedData -> GetECCTMult() << endl;
for(unsigned int i = 0 ; i < PreTreatedData -> GetECCEMult(); i++) {
// cout << i << " " << cristal_E << endl;
// if(PreTreatedData->GetECCTTime(i) > 0)
{
ECC_E.push_back(PreTreatedData->GetECCEEnergy(i));
ECC_T.push_back(PreTreatedData->GetECCTTime(i));
ECC_CloverNumber.push_back(PreTreatedData->GetECCEClover(i));
ECC_CristalNumber.push_back(PreTreatedData->GetECCECristal(i));
// cout << "BuildPhys " << PreTreatedData->GetECCEClover(i) << " " << PreTreatedData->GetECCECristal(i)<< " " << PreTreatedData->GetECCTTime(i) << " " << endl;
}
}
for(unsigned int j = 0 ; j < PreTreatedData -> GetGOCCEEMult(); j++) {
GOCCE_E.push_back(PreTreatedData->GetGOCCEEEnergy(j));
GOCCE_CloverNumber.push_back(PreTreatedData->GetGOCCEEClover(j));
GOCCE_CristalNumber.push_back(PreTreatedData->GetGOCCEECristal(j));
GOCCE_SegmentNumber.push_back(PreTreatedData->GetGOCCEESegment(j));
}
//int NumberOfHitClover = 0;
int DetectorID = -1;
for( unsigned short i = 0 ; i < PreTreatedData->GetECCEMult() ; i++ )
{
// cout << PreTreatedData->GetECCEClover(i) << endl;
if( PreTreatedData->GetECCEClover(i) != DetectorID)
{
if(i==0)
{
NumberOfHitClover++;
}
else if(PreTreatedData->GetECCEClover(i)!= PreTreatedData->GetECCEClover(i-1) )
{
NumberOfHitClover++;
}
}
if(NumberOfHitClover == 4) break;
//clover_mult -> Fill(NumberOfHitClover);
}
//cout << "NumberOfHitClover " << NumberOfHitClover << endl;
map<int, vector<int> > MapCristal;
map<int, vector<int> > MapSegment;
map<int, vector<int> > :: iterator it; // iterator used with MapCristal
map<int, vector<int> > :: iterator at; // iterator used with MapSegment
vector<int> PositionOfCristal_Buffer_ECC;
vector<int> PositionOfSegment_Buffer_GOCCE;
//Fill map Cristal
for(int clo = 0; clo < NumberOfClover; clo++)
{
for(unsigned int k = 0; k < ECC_CloverNumber.size(); k++)
{
if(ECC_CloverNumber.at(k) == clo) // && ECC_CristalNumber.at(k)== cri )
PositionOfCristal_Buffer_ECC.push_back(k);
}
if(PositionOfCristal_Buffer_ECC.size() != 0) MapCristal[clo] = PositionOfCristal_Buffer_ECC;
PositionOfCristal_Buffer_ECC.clear();
}
//Fill map Segment
for(int clo = 0; clo < NumberOfClover; clo++)
{
for(int cri = 0; cri < 4 ; cri++)
{
// for(int seg = 0; seg < 4 ; seg++)
{
for(unsigned int m = 0; m < GOCCE_CloverNumber.size(); m++)
{
if(GOCCE_CloverNumber.at(m) == clo && GOCCE_CristalNumber.at(m) == cri)// && GOCCE_SegmentNumber.at(m) == seg)
{
// PositionOfSegment_Buffer_GOCCE.push_back(4*clo+cri);
PositionOfSegment_Buffer_GOCCE.push_back(m);
}
}
}
if(PositionOfSegment_Buffer_GOCCE.size() != 0) MapSegment[4*clo+cri] = PositionOfSegment_Buffer_GOCCE;
PositionOfSegment_Buffer_GOCCE.clear();
}
}
// Treatment
for(int clo = 0; clo < NumberOfClover ; clo++)
{
double E = 0; double T = 0;
int mult_cristal = 0;
int cristal = -1 , segment;
int cristal_Emax = 0; int cristal_Emin = 0;
int Emax = 0, Emin = 1000000;
int Tmin = 0, Tmax = 0;
//ADD-BACK
it = MapCristal.find(clo);
int cristal_cond = 0;
if(it != MapCristal.end())
{
vector<int> PositionOfCristal = it -> second;
mult_cristal = PositionOfCristal.size();
//if(mult_cristal!=0) cristal_mult -> Fill(mult_cristal);
// ADD-BACK
//cout << "boucle" << endl;
for(unsigned int k = 0; k < PositionOfCristal.size(); k++)
{
int indice = PositionOfCristal.at(k);
cristal_cond += ECC_CristalNumber.at(indice);
// cout << ECC_CristalNumber.at(k) << " " ECC_E.at(k) << endl;
if(mult_cristal < 3)
{
E+= ECC_E.at(indice);
if(ECC_E.at(indice) < Emin) {
cristal_Emin = ECC_CristalNumber.at(indice);
Emin = ECC_E.at(indice);
Tmin = ECC_T.at(indice);
}
if(ECC_E.at(indice) > Emax) {
cristal_Emax = ECC_CristalNumber.at(indice);
Emax = ECC_E.at(indice);
Tmax = ECC_T.at(indice);
}
}
else // case of multiplicity = 3 or 4
{
E = -1; cristal_Emax = -1; cristal_Emin = -1; Tmax = -1; Tmin = -1;
}
// cout << ECC_E.at(indice) << " " << Emax << " " << cristal_Emax << " " << Emin << " " << cristal_Emin << endl;
}
if( (mult_cristal==1) || (mult_cristal ==2 && cristal_cond %2 == 1) )
{
// cout << cristal_cond << endl;
//cristal = cristal_Emax; T = Tmax;
//cout << Emax << " " << cristal_Emax << " " << Emin << " " << cristal_Emin << endl;
if(E > 500) { cristal = cristal_Emax; T = Tmax; }
else { cristal = cristal_Emin; T = Tmin; }
// DOPPLER CORRECTION
at = MapSegment.find(4*clo+cristal);
segment = -1;
if(at != MapSegment.end())
{
vector<int> PositionOfSegment = at -> second; // position of segment k in the vector
int segment_max = -1, E_temp = -1;
for(unsigned int m = 0; m < PositionOfSegment.size(); m++) // loop on hit segments of cristal cri of clover clo
{
int indice = PositionOfSegment.at(m);
if(GOCCE_E.at(indice) > 0 && GOCCE_CristalNumber.at(indice) == cristal)
{
if( GOCCE_E.at(indice) > E_temp )
{
segment_max = GOCCE_SegmentNumber.at(indice) ;
E_temp = GOCCE_E.at(indice);
}
}
}
segment = segment_max;
}
}
if(E > 0 && cristal != -1 && segment != -1)
{
TotalEnergy_lab.push_back(E);
Time.push_back(T);
CloverNumber.push_back(clo);
CristalNumber.push_back(cristal);
SegmentNumber.push_back(segment);
double theta = GetSegmentAngleTheta(clo, cristal, segment);
Theta.push_back(theta);
double doppler_E = DopplerCorrection(E, theta);
DopplerCorrectedEnergy.push_back(doppler_E);
// cout << E << " " << clo << " " << cristal << " " << segment << " " << theta << " " << doppler_E << endl;
}
} // end of condition over CristalMap
} // loop over NumberOfClover
CloverMult = GetClover_Mult();
//cout << "Exogam fine" << endl;
Hugo Jacob
committed
*/
}
double TExogamPhysics::DopplerCorrection(double E, double Theta)
{
double Pi = 3.141592654 ;
TString filename = "configs/beta.txt";
ifstream file;
//cout << filename << endl;
file.open(filename);
if(!file) cout << filename << " was not opened" << endl;
double E_corr = 0;
double beta = 0.;
file>>beta;
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
double gamma = 1./ sqrt(1-beta*beta);
E_corr = gamma * E * ( 1. - beta * cos(Theta*Pi/180.));
return(E_corr);
}
///////////////////////////////////////////////////////////////////////////
void TExogamPhysics::Clear()
{
EventMultiplicity = 0;
ECC_Multiplicity = 0;
GOCCE_Multiplicity = 0;
NumberOfHitClover = 0;
NumberOfHitCristal = 0;
ECC_CloverNumber .clear() ;
ECC_CristalNumber .clear() ;
GOCCE_CloverNumber .clear() ;
GOCCE_CristalNumber .clear() ;
GOCCE_SegmentNumber .clear() ;
// ECC
ECC_E.clear() ;
ECC_T.clear();
// GOCCE
GOCCE_E.clear() ;
CristalNumber.clear() ;
SegmentNumber.clear() ;
CloverNumber .clear() ;
TotalEnergy_lab .clear() ;
Time .clear() ;
DopplerCorrectedEnergy.clear() ;
Position .clear() ;
Theta .clear() ;
}
///////////////////////////////////////////////////////////////////////////
//// Innherited from VDetector Class ////
// Read stream at ConfigFile to pick-up parameters of detector (Position,...) using Token
void TExogamPhysics::ReadConfiguration(NPL::InputParser parser){
vector<NPL::InputBlock*> blocks = parser.GetAllBlocksWithToken("Exogam");
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << "//// " << blocks.size() << " detectors found " << endl;
vector<string> token = {"ANGLE_FILE"};
for(unsigned int i = 0 ; i < blocks.size() ; i++){
if(blocks[i]->HasTokenList(token)){
string AngleFile = blocks[i]->GetString("ANGLE_FILE");
AddClover(AngleFile);
else{
cout << "ERROR: check your input file formatting " << endl;
exit(1);
}
}
///////////////////////////////////////////////////////////////////////////
void TExogamPhysics::InitSpectra(){
m_Spectra = new TExogamSpectra(NumberOfClover);
}
///////////////////////////////////////////////////////////////////////////
void TExogamPhysics::FillSpectra(){
m_Spectra -> FillRawSpectra(EventData);
m_Spectra -> FillPreTreatedSpectra(PreTreatedData);
m_Spectra -> FillPhysicsSpectra(EventPhysics);
}
///////////////////////////////////////////////////////////////////////////
void TExogamPhysics::CheckSpectra(){
m_Spectra->CheckSpectra();
}
///////////////////////////////////////////////////////////////////////////
void TExogamPhysics::ClearSpectra(){
// To be done
}
///////////////////////////////////////////////////////////////////////////
map< string , TH1*> TExogamPhysics::GetSpectra() {
if(m_Spectra)
return m_Spectra->GetMapHisto();
else{
map< string , TH1*> empty;
return empty;
}
//////////////////////////////////////////////////////////////////////////
void TExogamPhysics::AddClover(string AngleFile)
{
ifstream file;
// TString filename = Form("posBaptiste/angles_exogam_clover%d.txt",NumberOfClover);
// TString filename = Form("posz42_simu50mm/angles_exogam_clover%d.txt",NumberOfClover);
// TString filename = Form("posz42_exp_stat_demiring/angles_exogam_clover%d.txt",NumberOfClover);
string path = "configs/";
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
TString filename = path + AngleFile;
cout << filename << endl;
file.open(filename);
if(!file) cout << filename << " was not opened" << endl;
vector <double> Angles;
vector < vector <double> > Segment_angles;
vector < vector < vector <double> > > Cristal_angles;
Cristal_angles.clear();
double angle; string buffer;
for(int i = 0; i < 4; i++)
{
Segment_angles.clear();
for(int j = 0; j < 4; j++)
{
Angles.clear();
for(int k = 0; k < 2; k++)
{
file >> buffer >> angle;
Angles.push_back(angle); // Theta (k = 0) Phi (k = 1)
//cout << angle << endl;
if(Angles.size()==2)
cout << "Clover " << NumberOfClover << ": Theta=" << Angles[0] << " Phi=" << Angles[1]<< endl;
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
}
Segment_angles.push_back(Angles);
}
Cristal_angles.push_back(Segment_angles);
}
Clover_Angles_Theta_Phi.push_back(Cristal_angles);
file.close();
NumberOfClover++;
}
// Add Parameter to the CalibrationManger
void TExogamPhysics::AddParameterToCalibrationManager()
{
CalibrationManager* Cal = CalibrationManager::getInstance();
for(int i = 0 ; i < NumberOfClover ; i++)
{
for( int j = 0 ; j < 4 ; j++)
{
Cal->AddParameter("EXOGAM", "Cl"+ NPL::itoa(i)+"_Cr"+ NPL::itoa(j)+"_Elow" ,"EXOGAM_Cl"+ NPL::itoa(i)+"_Cr"+ NPL::itoa(j)+"_Elow");
Cal->AddParameter("EXOGAM", "Cl"+ NPL::itoa(i)+"_Cr"+ NPL::itoa(j)+"_Ehigh","EXOGAM_Cl"+ NPL::itoa(i)+"_Cr"+ NPL::itoa(j)+"_Ehigh");
Cal->AddParameter("EXOGAM", "Cl"+ NPL::itoa(i)+"_Cr"+ NPL::itoa(j)+"_T","EXOGAM_Cl"+ NPL::itoa(i)+"_Cr"+ NPL::itoa(j)+"_T") ;
for( int k = 0 ; k < 4 ; k++)
{
Cal->AddParameter("EXOGAM", "Cl"+ NPL::itoa(i)+"_Cr"+ NPL::itoa(j)+"_Seg"+ NPL::itoa(k)+"_E","EXOGAM_Cl"+ NPL::itoa(i)+"_Cr"+ NPL::itoa(j)+"_Seg"+ NPL::itoa(k)+"_E") ;
}
}
}
}
// Activated associated Branches and link it to the private member DetectorData address
// In this method mother Branches (Detector) AND daughter leaf (fDetector_parameter) have to be activated
void TExogamPhysics::InitializeRootInputRaw()
{
TChain* inputChain = RootInput::getInstance()->GetChain() ;
inputChain->SetBranchStatus( "EXOGAM" , true ) ;
inputChain->SetBranchStatus( "fEXO_*" , true ) ;
inputChain->SetBranchAddress( "EXOGAM" , &EventData ) ;
/*
TList* outputList = RootOutput::getInstance()->GetList();
clover_mult = new TH1F("clover_mult","clover_mult",20,0,20);
outputList->Add(clover_mult);
cristal_mult = new TH1F("cristal_mult","cristal_mult",20,0,20);
outputList->Add(cristal_mult);
*/
}
/////////////////////////////////////////////////////////////////////
// Activated associated Branches and link it to the private member DetectorPhysics address
// In this method mother Branches (Detector) AND daughter leaf (parameter) have to be activated
void TExogamPhysics::InitializeRootInputPhysics() {
TChain* inputChain = RootInput::getInstance()->GetChain();
inputChain->SetBranchStatus( "EventMultiplicty" , true );
inputChain->SetBranchStatus( "ECC_Multiplicity" , true );
inputChain->SetBranchStatus( "GOCCE_Multiplicity" , true );
inputChain->SetBranchStatus( "ECC_CloverNumber" , true );
inputChain->SetBranchStatus( "ECC_CristalNumber" , true );
inputChain->SetBranchStatus( "GOCCE_CloverNumber" , true );
inputChain->SetBranchStatus( "GOCCE_CristalNumber" , true );
inputChain->SetBranchStatus( "GOCCE_SegmentNumber" , true );
inputChain->SetBranchStatus( "ECC_E" , true );
inputChain->SetBranchStatus( "ECC_T" , true );
inputChain->SetBranchStatus( "GOCCE_E" , true );
inputChain->SetBranchStatus( "CristalNumber" , true );
inputChain->SetBranchStatus( "SegmentNumber" , true );
inputChain->SetBranchStatus( "CloverNumber" , true );
inputChain->SetBranchStatus( "CloverMult" , true );
inputChain->SetBranchStatus( "TotalEnergy_lab" , true );
inputChain->SetBranchStatus( "Time" , true );
inputChain->SetBranchStatus( "DopplerCorrectedEnergy" , true );
inputChain->SetBranchStatus( "Position" , true );
inputChain->SetBranchStatus( "Theta" , true );
inputChain->SetBranchAddress( "EXOGAM" , &EventPhysics );
}
/////////////////////////////////////////////////////////////////////
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// Create associated branches and associated private member DetectorPhysics address
void TExogamPhysics::InitializeRootOutput()
{
TTree* outputTree = RootOutput::getInstance()->GetTree() ;
outputTree->Branch( "EXOGAM" , "TExogamPhysics" , &EventPhysics ) ;
// control histograms if needed
/*
TList* outputList = RootOutput::getInstance()->GetList();
controle = new TH1F("controle","histo de controle",20,0,20);
outputList->Add(controle);
*/
}
///////////////////////////////////////////////////////////////////////////
namespace EXOGAM_LOCAL
{
// tranform an integer to a string
string itoa(int value)
{
std::ostringstream o;
if (!(o << value))
return "" ;
return o.str();
}
}
/////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Construct Method to be pass to the DetectorFactory //
////////////////////////////////////////////////////////////////////////////////
NPL::VDetector* TExogamPhysics::Construct(){
return (NPL::VDetector*) new TExogamPhysics();
}
////////////////////////////////////////////////////////////////////////////////
// Registering the construct method to the factory //
////////////////////////////////////////////////////////////////////////////////
extern "C"{
class proxy_exogam{
NPL::DetectorFactory::getInstance()->AddToken("Exogam","Exogam");
NPL::DetectorFactory::getInstance()->AddDetector("Exogam",TExogamPhysics::Construct);