Skip to content
Snippets Groups Projects
Commit f1204ca4 authored by Greg Christian's avatar Greg Christian
Browse files

Initial status after running nptool-wizard

parent c048ef6d
No related branches found
No related tags found
No related merge requests found
add_custom_command(OUTPUT TAnnularCsIPhysicsDict.cxx COMMAND ../../scripts/build_dict.sh TAnnularCsIPhysics.h TAnnularCsIPhysicsDict.cxx TAnnularCsIPhysics.rootmap libNPAnnularCsI.dylib DEPENDS TAnnularCsIPhysics.h)
add_custom_command(OUTPUT TAnnularCsIDataDict.cxx COMMAND ../../scripts/build_dict.sh TAnnularCsIData.h TAnnularCsIDataDict.cxx TAnnularCsIData.rootmap libNPAnnularCsI.dylib DEPENDS TAnnularCsIData.h)
add_library(NPAnnularCsI SHARED TAnnularCsISpectra.cxx TAnnularCsIData.cxx TAnnularCsIPhysics.cxx TAnnularCsIDataDict.cxx TAnnularCsIPhysicsDict.cxx )
target_link_libraries(NPAnnularCsI ${ROOT_LIBRARIES} NPCore)
install(FILES TAnnularCsIData.h TAnnularCsIPhysics.h TAnnularCsISpectra.h DESTINATION ${CMAKE_INCLUDE_OUTPUT_DIRECTORY})
/*****************************************************************************
* Copyright (C) 2009-2018 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Greg Christian contact address: gchristian@tamu.edu *
* *
* Creation Date : March 2018 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold AnnularCsI Raw data *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
* *
*****************************************************************************/
#include "TAnnularCsIData.h"
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
using namespace std;
ClassImp(TAnnularCsIData)
//////////////////////////////////////////////////////////////////////
TAnnularCsIData::TAnnularCsIData() {
}
//////////////////////////////////////////////////////////////////////
TAnnularCsIData::~TAnnularCsIData() {
}
//////////////////////////////////////////////////////////////////////
void TAnnularCsIData::Clear() {
// Energy
fAnnularCsI_E_DetectorNbr.clear();
fAnnularCsI_Energy.clear();
// Time
fAnnularCsI_T_DetectorNbr.clear();
fAnnularCsI_Time.clear();
}
//////////////////////////////////////////////////////////////////////
void TAnnularCsIData::Dump() const {
// This method is very useful for debuging and worth the dev.
cout << "XXXXXXXXXXXXXXXXXXXXXXXX New Event [TAnnularCsIData::Dump()] XXXXXXXXXXXXXXXXX" << endl;
// Energy
size_t mysize = fAnnularCsI_E_DetectorNbr.size();
cout << "AnnularCsI_E_Mult: " << mysize << endl;
for (size_t i = 0 ; i < mysize ; i++){
cout << "DetNbr: " << fAnnularCsI_E_DetectorNbr[i]
<< " Energy: " << fAnnularCsI_Energy[i];
}
// Time
mysize = fAnnularCsI_T_DetectorNbr.size();
cout << "AnnularCsI_T_Mult: " << mysize << endl;
for (size_t i = 0 ; i < mysize ; i++){
cout << "DetNbr: " << fAnnularCsI_T_DetectorNbr[i]
<< " Time: " << fAnnularCsI_Time[i];
}
}
#ifndef __AnnularCsIDATA__
#define __AnnularCsIDATA__
/*****************************************************************************
* Copyright (C) 2009-2018 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Greg Christian contact address: gchristian@tamu.edu *
* *
* Creation Date : March 2018 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold AnnularCsI Raw data *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
* *
*****************************************************************************/
// STL
#include <vector>
using namespace std;
// ROOT
#include "TObject.h"
class TAnnularCsIData : public TObject {
//////////////////////////////////////////////////////////////
// data members are hold into vectors in order
// to allow multiplicity treatment
private:
// Energy
vector<UShort_t> fAnnularCsI_E_DetectorNbr;
vector<Double_t> fAnnularCsI_Energy;
// Time
vector<UShort_t> fAnnularCsI_T_DetectorNbr;
vector<Double_t> fAnnularCsI_Time;
//////////////////////////////////////////////////////////////
// Constructor and destructor
public:
TAnnularCsIData();
~TAnnularCsIData();
//////////////////////////////////////////////////////////////
// Inherited from TObject and overriden to avoid warnings
public:
void Clear();
void Clear(const Option_t*) {};
void Dump() const;
//////////////////////////////////////////////////////////////
// Getters and Setters
// Prefer inline declaration to avoid unnecessary called of
// frequently used methods
// add //! to avoid ROOT creating dictionnary for the methods
public:
////////////////////// SETTERS ////////////////////////
// Energy
inline void SetEnergy(const UShort_t& DetNbr,const Double_t& Energy){
fAnnularCsI_E_DetectorNbr.push_back(DetNbr);
fAnnularCsI_Energy.push_back(Energy);
};//!
// Time
inline void SetTime(const UShort_t& DetNbr,const Double_t& Time) {
fAnnularCsI_T_DetectorNbr.push_back(DetNbr);
fAnnularCsI_Time.push_back(Time);
};//!
////////////////////// GETTERS ////////////////////////
// Energy
inline UShort_t GetMultEnergy() const
{return fAnnularCsI_E_DetectorNbr.size();}
inline UShort_t GetE_DetectorNbr(const unsigned int &i) const
{return fAnnularCsI_E_DetectorNbr[i];}//!
inline Double_t Get_Energy(const unsigned int &i) const
{return fAnnularCsI_Energy[i];}//!
// Time
inline UShort_t GetMultTime() const
{return fAnnularCsI_T_DetectorNbr.size();}
inline UShort_t GetT_DetectorNbr(const unsigned int &i) const
{return fAnnularCsI_T_DetectorNbr[i];}//!
inline Double_t Get_Time(const unsigned int &i) const
{return fAnnularCsI_Time[i];}//!
//////////////////////////////////////////////////////////////
// Required for ROOT dictionnary
ClassDef(TAnnularCsIData,1) // AnnularCsIData structure
};
#endif
/*****************************************************************************
* Copyright (C) 2009-2018 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Greg Christian contact address: gchristian@tamu.edu *
* *
* Creation Date : March 2018 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold AnnularCsI Treated data *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
* *
*****************************************************************************/
#include "TAnnularCsIPhysics.h"
// STL
#include <sstream>
#include <iostream>
#include <cmath>
#include <stdlib.h>
#include <limits>
using namespace std;
// NPL
#include "RootInput.h"
#include "RootOutput.h"
#include "NPDetectorFactory.h"
#include "NPOptionManager.h"
// ROOT
#include "TChain.h"
ClassImp(TAnnularCsIPhysics)
///////////////////////////////////////////////////////////////////////////
TAnnularCsIPhysics::TAnnularCsIPhysics()
: m_EventData(new TAnnularCsIData),
m_PreTreatedData(new TAnnularCsIData),
m_EventPhysics(this),
m_Spectra(0),
m_E_RAW_Threshold(0), // adc channels
m_E_Threshold(0), // MeV
m_NumberOfDetectors(0) {
}
///////////////////////////////////////////////////////////////////////////
/// A usefull method to bundle all operation to add a detector
void TAnnularCsIPhysics::AddDetector(TVector3 , string ){
// In That simple case nothing is done
// Typically for more complex detector one would calculate the relevant
// positions (stripped silicon) or angles (gamma array)
m_NumberOfDetectors++;
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::AddDetector(double R, double Theta, double Phi, string shape){
// Compute the TVector3 corresponding
TVector3 Pos(R*sin(Theta)*cos(Phi),R*sin(Theta)*sin(Phi),R*cos(Theta));
// Call the cartesian method
AddDetector(Pos,shape);
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::BuildSimplePhysicalEvent() {
BuildPhysicalEvent();
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::BuildPhysicalEvent() {
// apply thresholds and calibration
PreTreat();
// match energy and time together
unsigned int mysizeE = m_PreTreatedData->GetMultEnergy();
unsigned int mysizeT = m_PreTreatedData->GetMultTime();
for (UShort_t e = 0; e < mysizeE ; e++) {
for (UShort_t t = 0; t < mysizeT ; t++) {
if (m_PreTreatedData->GetE_DetectorNbr(e) == m_PreTreatedData->GetT_DetectorNbr(t)) {
DetectorNumber.push_back(m_PreTreatedData->GetE_DetectorNbr(e));
Energy.push_back(m_PreTreatedData->Get_Energy(e));
Time.push_back(m_PreTreatedData->Get_Time(t));
}
}
}
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::PreTreat() {
// This method typically applies thresholds and calibrations
// Might test for disabled channels for more complex detector
// clear pre-treated object
ClearPreTreatedData();
// instantiate CalibrationManager
static CalibrationManager* Cal = CalibrationManager::getInstance();
// Energy
unsigned int mysize = m_EventData->GetMultEnergy();
for (UShort_t i = 0; i < mysize ; ++i) {
if (m_EventData->Get_Energy(i) > m_E_RAW_Threshold) {
Double_t Energy = Cal->ApplyCalibration("AnnularCsI/ENERGY"+NPL::itoa(m_EventData->GetE_DetectorNbr(i)),m_EventData->Get_Energy(i));
if (Energy > m_E_Threshold) {
m_PreTreatedData->SetEnergy(m_EventData->GetE_DetectorNbr(i), Energy);
}
}
}
// Time
mysize = m_EventData->GetMultTime();
for (UShort_t i = 0; i < mysize; ++i) {
Double_t Time= Cal->ApplyCalibration("AnnularCsI/TIME"+NPL::itoa(m_EventData->GetT_DetectorNbr(i)),m_EventData->Get_Time(i));
m_PreTreatedData->SetTime(m_EventData->GetT_DetectorNbr(i), Time);
}
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::ReadAnalysisConfig() {
bool ReadingStatus = false;
// path to file
string FileName = "./configs/ConfigAnnularCsI.dat";
// open analysis config file
ifstream AnalysisConfigFile;
AnalysisConfigFile.open(FileName.c_str());
if (!AnalysisConfigFile.is_open()) {
cout << " No ConfigAnnularCsI.dat found: Default parameter loaded for Analayis " << FileName << endl;
return;
}
cout << " Loading user parameter for Analysis from ConfigAnnularCsI.dat " << endl;
// Save it in a TAsciiFile
TAsciiFile* asciiConfig = RootOutput::getInstance()->GetAsciiFileAnalysisConfig();
asciiConfig->AppendLine("%%% ConfigAnnularCsI.dat %%%");
asciiConfig->Append(FileName.c_str());
asciiConfig->AppendLine("");
// read analysis config file
string LineBuffer,DataBuffer,whatToDo;
while (!AnalysisConfigFile.eof()) {
// Pick-up next line
getline(AnalysisConfigFile, LineBuffer);
// search for "header"
string name = "ConfigAnnularCsI";
if (LineBuffer.compare(0, name.length(), name) == 0)
ReadingStatus = true;
// loop on tokens and data
while (ReadingStatus ) {
whatToDo="";
AnalysisConfigFile >> whatToDo;
// Search for comment symbol (%)
if (whatToDo.compare(0, 1, "%") == 0) {
AnalysisConfigFile.ignore(numeric_limits<streamsize>::max(), '\n' );
}
else if (whatToDo=="E_RAW_THRESHOLD") {
AnalysisConfigFile >> DataBuffer;
m_E_RAW_Threshold = atof(DataBuffer.c_str());
cout << whatToDo << " " << m_E_RAW_Threshold << endl;
}
else if (whatToDo=="E_THRESHOLD") {
AnalysisConfigFile >> DataBuffer;
m_E_Threshold = atof(DataBuffer.c_str());
cout << whatToDo << " " << m_E_Threshold << endl;
}
else {
ReadingStatus = false;
}
}
}
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::Clear() {
DetectorNumber.clear();
Energy.clear();
Time.clear();
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::ReadConfiguration(NPL::InputParser parser) {
vector<NPL::InputBlock*> blocks = parser.GetAllBlocksWithToken("AnnularCsI");
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << "//// " << blocks.size() << " detectors found " << endl;
vector<string> cart = {"POS","Shape"};
vector<string> sphe = {"R","Theta","Phi","Shape"};
for(unsigned int i = 0 ; i < blocks.size() ; i++){
if(blocks[i]->HasTokenList(cart)){
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << endl << "//// AnnularCsI " << i+1 << endl;
TVector3 Pos = blocks[i]->GetTVector3("POS","mm");
string Shape = blocks[i]->GetString("Shape");
AddDetector(Pos,Shape);
}
else if(blocks[i]->HasTokenList(sphe)){
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << endl << "//// AnnularCsI " << i+1 << endl;
double R = blocks[i]->GetDouble("R","mm");
double Theta = blocks[i]->GetDouble("Theta","deg");
double Phi = blocks[i]->GetDouble("Phi","deg");
string Shape = blocks[i]->GetString("Shape");
AddDetector(R,Theta,Phi,Shape);
}
else{
cout << "ERROR: check your input file formatting " << endl;
exit(1);
}
}
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::InitSpectra() {
m_Spectra = new TAnnularCsISpectra(m_NumberOfDetectors);
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::FillSpectra() {
m_Spectra -> FillRawSpectra(m_EventData);
m_Spectra -> FillPreTreatedSpectra(m_PreTreatedData);
m_Spectra -> FillPhysicsSpectra(m_EventPhysics);
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::CheckSpectra() {
m_Spectra->CheckSpectra();
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::ClearSpectra() {
// To be done
}
///////////////////////////////////////////////////////////////////////////
map< string , TH1*> TAnnularCsIPhysics::GetSpectra() {
if(m_Spectra)
return m_Spectra->GetMapHisto();
else{
map< string , TH1*> empty;
return empty;
}
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::WriteSpectra() {
m_Spectra->WriteSpectra();
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::AddParameterToCalibrationManager() {
CalibrationManager* Cal = CalibrationManager::getInstance();
for (int i = 0; i < m_NumberOfDetectors; ++i) {
Cal->AddParameter("AnnularCsI", "D"+ NPL::itoa(i+1)+"_ENERGY","AnnularCsI_D"+ NPL::itoa(i+1)+"_ENERGY");
Cal->AddParameter("AnnularCsI", "D"+ NPL::itoa(i+1)+"_TIME","AnnularCsI_D"+ NPL::itoa(i+1)+"_TIME");
}
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::InitializeRootInputRaw() {
TChain* inputChain = RootInput::getInstance()->GetChain();
inputChain->SetBranchStatus("AnnularCsI", true );
inputChain->SetBranchAddress("AnnularCsI", &m_EventData );
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::InitializeRootInputPhysics() {
TChain* inputChain = RootInput::getInstance()->GetChain();
inputChain->SetBranchAddress("AnnularCsI", &m_EventPhysics);
}
///////////////////////////////////////////////////////////////////////////
void TAnnularCsIPhysics::InitializeRootOutput() {
TTree* outputTree = RootOutput::getInstance()->GetTree();
outputTree->Branch("AnnularCsI", "TAnnularCsIPhysics", &m_EventPhysics);
}
////////////////////////////////////////////////////////////////////////////////
// Construct Method to be pass to the DetectorFactory //
////////////////////////////////////////////////////////////////////////////////
NPL::VDetector* TAnnularCsIPhysics::Construct() {
return (NPL::VDetector*) new TAnnularCsIPhysics();
}
////////////////////////////////////////////////////////////////////////////////
// Registering the construct method to the factory //
////////////////////////////////////////////////////////////////////////////////
extern "C"{
class proxy_AnnularCsI{
public:
proxy_AnnularCsI(){
NPL::DetectorFactory::getInstance()->AddToken("AnnularCsI","AnnularCsI");
NPL::DetectorFactory::getInstance()->AddDetector("AnnularCsI",TAnnularCsIPhysics::Construct);
}
};
proxy_AnnularCsI p_AnnularCsI;
}
#ifndef TAnnularCsIPHYSICS_H
#define TAnnularCsIPHYSICS_H
/*****************************************************************************
* Copyright (C) 2009-2018 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Greg Christian contact address: gchristian@tamu.edu *
* *
* Creation Date : March 2018 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold AnnularCsI Treated data *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
* *
*****************************************************************************/
// C++ headers
#include <vector>
#include <map>
#include <string>
using namespace std;
// ROOT headers
#include "TObject.h"
#include "TH1.h"
#include "TVector3.h"
// NPTool headers
#include "TAnnularCsIData.h"
#include "TAnnularCsISpectra.h"
#include "NPCalibrationManager.h"
#include "NPVDetector.h"
#include "NPInputParser.h"
// forward declaration
class TAnnularCsISpectra;
class TAnnularCsIPhysics : public TObject, public NPL::VDetector {
//////////////////////////////////////////////////////////////
// constructor and destructor
public:
TAnnularCsIPhysics();
~TAnnularCsIPhysics() {};
//////////////////////////////////////////////////////////////
// Inherited from TObject and overriden to avoid warnings
public:
void Clear();
void Clear(const Option_t*) {};
//////////////////////////////////////////////////////////////
// data obtained after BuildPhysicalEvent() and stored in
// output ROOT file
public:
vector<int> DetectorNumber;
vector<double> Energy;
vector<double> Time;
/// A usefull method to bundle all operation to add a detector
void AddDetector(TVector3 POS, string shape);
void AddDetector(double R, double Theta, double Phi, string shape);
//////////////////////////////////////////////////////////////
// methods inherited from the VDetector ABC class
public:
// read stream from ConfigFile to pick-up detector parameters
void ReadConfiguration(NPL::InputParser);
// add parameters to the CalibrationManger
void AddParameterToCalibrationManager();
// method called event by event, aiming at extracting the
// physical information from detector
void BuildPhysicalEvent();
// same as BuildPhysicalEvent() method but with a simpler
// treatment
void BuildSimplePhysicalEvent();
// same as above but for online analysis
void BuildOnlinePhysicalEvent() {BuildPhysicalEvent();};
// activate raw data object and branches from input TChain
// in this method mother branches (Detector) AND daughter leaves
// (fDetector_parameter) have to be activated
void InitializeRootInputRaw();
// activate physics data object and branches from input TChain
// in this method mother branches (Detector) AND daughter leaves
// (fDetector_parameter) have to be activated
void InitializeRootInputPhysics();
// create branches of output ROOT file
void InitializeRootOutput();
// clear the raw and physical data objects event by event
void ClearEventPhysics() {Clear();}
void ClearEventData() {m_EventData->Clear();}
// methods related to the TAnnularCsISpectra class
// instantiate the TAnnularCsISpectra class and
// declare list of histograms
void InitSpectra();
// fill the spectra
void FillSpectra();
// used for Online mainly, sanity check for histograms and
// change their color if issues are found, for example
void CheckSpectra();
// used for Online only, clear all the spectra
void ClearSpectra();
// write spectra to ROOT output file
void WriteSpectra();
//////////////////////////////////////////////////////////////
// specific methods to AnnularCsI array
public:
// remove bad channels, calibrate the data and apply thresholds
void PreTreat();
// clear the pre-treated object
void ClearPreTreatedData() {m_PreTreatedData->Clear();}
// read the user configuration file. If no file is found, load standard one
void ReadAnalysisConfig();
// give and external TAnnularCsIData object to TAnnularCsIPhysics.
// needed for online analysis for example
void SetRawDataPointer(TAnnularCsIData* rawDataPointer) {m_EventData = rawDataPointer;}
// objects are not written in the TTree
private:
TAnnularCsIData* m_EventData; //!
TAnnularCsIData* m_PreTreatedData; //!
TAnnularCsIPhysics* m_EventPhysics; //!
// getters for raw and pre-treated data object
public:
TAnnularCsIData* GetRawData() const {return m_EventData;}
TAnnularCsIData* GetPreTreatedData() const {return m_PreTreatedData;}
// parameters used in the analysis
private:
// thresholds
double m_E_RAW_Threshold; //!
double m_E_Threshold; //!
// number of detectors
private:
int m_NumberOfDetectors; //!
// spectra class
private:
TAnnularCsISpectra* m_Spectra; // !
// spectra getter
public:
map<string, TH1*> GetSpectra();
// Static constructor to be passed to the Detector Factory
public:
static NPL::VDetector* Construct();
ClassDef(TAnnularCsIPhysics,1) // AnnularCsIPhysics structure
};
#endif
/*****************************************************************************
* Copyright (C) 2009-2018 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Greg Christian contact address: gchristian@tamu.edu *
* *
* Creation Date : March 2018 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold AnnularCsI Spectra *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
* *
*****************************************************************************/
// class header
#include "TAnnularCsISpectra.h"
// STL
#include <iostream>
#include <string>
using namespace std;
// NPTool header
#include "NPOptionManager.h"
////////////////////////////////////////////////////////////////////////////////
TAnnularCsISpectra::TAnnularCsISpectra()
: fNumberOfDetectors(0) {
SetName("AnnularCsI");
}
////////////////////////////////////////////////////////////////////////////////
TAnnularCsISpectra::TAnnularCsISpectra(unsigned int NumberOfDetectors) {
if(NPOptionManager::getInstance()->GetVerboseLevel()>0)
cout << "************************************************" << endl
<< "TAnnularCsISpectra : Initalizing control spectra for "
<< NumberOfDetectors << " Detectors" << endl
<< "************************************************" << endl ;
SetName("AnnularCsI");
fNumberOfDetectors = NumberOfDetectors;
InitRawSpectra();
InitPreTreatedSpectra();
InitPhysicsSpectra();
}
////////////////////////////////////////////////////////////////////////////////
TAnnularCsISpectra::~TAnnularCsISpectra() {
}
////////////////////////////////////////////////////////////////////////////////
void TAnnularCsISpectra::InitRawSpectra() {
static string name;
for (unsigned int i = 0; i < fNumberOfDetectors; i++) { // loop on number of detectors
// Energy
name = "AnnularCsI"+NPL::itoa(i+1)+"_ENERGY_RAW";
AddHisto1D(name, name, 4096, 0, 16384, "AnnularCsI/RAW");
// Time
name = "AnnularCsI"+NPL::itoa(i+1)+"_TIME_RAW";
AddHisto1D(name, name, 4096, 0, 16384, "AnnularCsI/RAW");
} // end loop on number of detectors
}
////////////////////////////////////////////////////////////////////////////////
void TAnnularCsISpectra::InitPreTreatedSpectra() {
static string name;
for (unsigned int i = 0; i < fNumberOfDetectors; i++) { // loop on number of detectors
// Energy
name = "AnnularCsI"+NPL::itoa(i+1)+"_ENERGY_CAL";
AddHisto1D(name, name, 500, 0, 25, "AnnularCsI/CAL");
// Time
name = "AnnularCsI"+NPL::itoa(i+1)+"_TIME_CAL";
AddHisto1D(name, name, 500, 0, 25, "AnnularCsI/CAL");
} // end loop on number of detectors
}
////////////////////////////////////////////////////////////////////////////////
void TAnnularCsISpectra::InitPhysicsSpectra() {
static string name;
// Kinematic Plot
name = "AnnularCsI_ENERGY_TIME";
AddHisto2D(name, name, 500, 0, 500, 500, 0, 50, "AnnularCsI/PHY");
}
////////////////////////////////////////////////////////////////////////////////
void TAnnularCsISpectra::FillRawSpectra(TAnnularCsIData* RawData) {
static string name;
static string family;
// Energy
unsigned int sizeE = RawData->GetMultEnergy();
for (unsigned int i = 0; i < sizeE; i++) {
name = "AnnularCsI"+NPL::itoa(RawData->GetE_DetectorNbr(i))+"_ENERGY_RAW";
family = "AnnularCsI/RAW";
FillSpectra(family,name,RawData->Get_Energy(i));
}
// Time
unsigned int sizeT = RawData->GetMultTime();
for (unsigned int i = 0; i < sizeT; i++) {
name = "AnnularCsI"+NPL::itoa(RawData->GetT_DetectorNbr(i))+"_TIME_RAW";
family = "AnnularCsI/RAW";
FillSpectra(family,name,RawData->Get_Time(i));
}
}
////////////////////////////////////////////////////////////////////////////////
void TAnnularCsISpectra::FillPreTreatedSpectra(TAnnularCsIData* PreTreatedData) {
static string name;
static string family;
// Energy
unsigned int sizeE = PreTreatedData->GetMultEnergy();
for (unsigned int i = 0; i < sizeE; i++) {
name = "AnnularCsI"+NPL::itoa(PreTreatedData->GetE_DetectorNbr(i))+"_ENERGY_CAL";
family = "AnnularCsI/CAL";
FillSpectra(family,name,PreTreatedData->Get_Energy(i));
}
// Time
unsigned int sizeT = PreTreatedData->GetMultTime();
for (unsigned int i = 0; i < sizeT; i++) {
name = "AnnularCsI"+NPL::itoa(PreTreatedData->GetT_DetectorNbr(i))+"_TIME_CAL";
family = "AnnularCsI/CAL";
FillSpectra(family,name,PreTreatedData->Get_Time(i));
}
}
////////////////////////////////////////////////////////////////////////////////
void TAnnularCsISpectra::FillPhysicsSpectra(TAnnularCsIPhysics* Physics) {
static string name;
static string family;
family= "AnnularCsI/PHY";
// Energy vs time
unsigned int sizeE = Physics->Energy.size();
for(unsigned int i = 0 ; i < sizeE ; i++){
name = "AnnularCsI_ENERGY_TIME";
FillSpectra(family,name,Physics->Energy[i],Physics->Time[i]);
}
}
#ifndef TAnnularCsISPECTRA_H
#define TAnnularCsISPECTRA_H
/*****************************************************************************
* Copyright (C) 2009-2018 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Greg Christian contact address: gchristian@tamu.edu *
* *
* Creation Date : March 2018 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold AnnularCsI Spectra *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
* *
*****************************************************************************/
// NPLib headers
#include "NPVSpectra.h"
#include "TAnnularCsIData.h"
#include "TAnnularCsIPhysics.h"
// Forward Declaration
class TAnnularCsIPhysics;
class TAnnularCsISpectra : public VSpectra {
//////////////////////////////////////////////////////////////
// constructor and destructor
public:
TAnnularCsISpectra();
TAnnularCsISpectra(unsigned int NumberOfDetectors);
~TAnnularCsISpectra();
//////////////////////////////////////////////////////////////
// Initialization methods
private:
void InitRawSpectra();
void InitPreTreatedSpectra();
void InitPhysicsSpectra();
//////////////////////////////////////////////////////////////
// Filling methods
public:
void FillRawSpectra(TAnnularCsIData*);
void FillPreTreatedSpectra(TAnnularCsIData*);
void FillPhysicsSpectra(TAnnularCsIPhysics*);
//////////////////////////////////////////////////////////////
// Detector parameters
private:
unsigned int fNumberOfDetectors;
};
#endif
/*****************************************************************************
* Copyright (C) 2009-2018 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Greg Christian contact address: gchristian@tamu.edu *
* *
* Creation Date : March 2018 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class describe AnnularCsI simulation *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
*****************************************************************************/
// C++ headers
#include <sstream>
#include <cmath>
#include <limits>
//G4 Geometry object
#include "G4Tubs.hh"
#include "G4Box.hh"
//G4 sensitive
#include "G4SDManager.hh"
#include "G4MultiFunctionalDetector.hh"
//G4 various object
#include "G4Material.hh"
#include "G4Transform3D.hh"
#include "G4PVPlacement.hh"
#include "G4VisAttributes.hh"
#include "G4Colour.hh"
// NPTool header
#include "AnnularCsI.hh"
#include "CalorimeterScorers.hh"
#include "RootOutput.h"
#include "MaterialManager.hh"
#include "NPSDetectorFactory.hh"
#include "NPOptionManager.h"
#include "NPSHitsMap.hh"
// CLHEP header
#include "CLHEP/Random/RandGauss.h"
using namespace std;
using namespace CLHEP;
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
namespace AnnularCsI_NS{
// Energy and time Resolution
const double EnergyThreshold = 0.1*MeV;
const double ResoTime = 4.5*ns ;
const double ResoEnergy = 1.0*MeV ;
const double Radius = 50*mm ;
const double Width = 100*mm ;
const double Thickness = 300*mm ;
const string Material = "BC400";
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// AnnularCsI Specific Method
AnnularCsI::AnnularCsI(){
m_Event = new TAnnularCsIData() ;
m_AnnularCsIScorer = 0;
m_SquareDetector = 0;
m_CylindricalDetector = 0;
// RGB Color + Transparency
m_VisSquare = new G4VisAttributes(G4Colour(0, 1, 0, 0.5));
m_VisCylinder = new G4VisAttributes(G4Colour(0, 0, 1, 0.5));
}
AnnularCsI::~AnnularCsI(){
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void AnnularCsI::AddDetector(G4ThreeVector POS, string Shape){
// Convert the POS value to R theta Phi as Spherical coordinate is easier in G4
m_R.push_back(POS.mag());
m_Theta.push_back(POS.theta());
m_Phi.push_back(POS.phi());
m_Shape.push_back(Shape);
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
void AnnularCsI::AddDetector(double R, double Theta, double Phi, string Shape){
m_R.push_back(R);
m_Theta.push_back(Theta);
m_Phi.push_back(Phi);
m_Shape.push_back(Shape);
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4LogicalVolume* AnnularCsI::BuildSquareDetector(){
if(!m_SquareDetector){
G4Box* box = new G4Box("AnnularCsI_Box",AnnularCsI_NS::Width*0.5,
AnnularCsI_NS::Width*0.5,AnnularCsI_NS::Thickness*0.5);
G4Material* DetectorMaterial = MaterialManager::getInstance()->GetMaterialFromLibrary(AnnularCsI_NS::Material);
m_SquareDetector = new G4LogicalVolume(box,DetectorMaterial,"logic_AnnularCsI_Box",0,0,0);
m_SquareDetector->SetVisAttributes(m_VisSquare);
m_SquareDetector->SetSensitiveDetector(m_AnnularCsIScorer);
}
return m_SquareDetector;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4LogicalVolume* AnnularCsI::BuildCylindricalDetector(){
if(!m_CylindricalDetector){
G4Tubs* tub = new G4Tubs("AnnularCsI_Cyl",0,AnnularCsI_NS::Radius,AnnularCsI_NS::Thickness*0.5,0,360*deg);
G4Material* DetectorMaterial = MaterialManager::getInstance()->GetMaterialFromLibrary(AnnularCsI_NS::Material);
m_CylindricalDetector = new G4LogicalVolume(tub,DetectorMaterial,"logic_AnnularCsI_tub",0,0,0);
m_CylindricalDetector->SetVisAttributes(m_VisSquare);
m_CylindricalDetector->SetSensitiveDetector(m_AnnularCsIScorer);
}
return m_CylindricalDetector;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Virtual Method of NPS::VDetector class
// Read stream at Configfile to pick-up parameters of detector (Position,...)
// Called in DetecorConstruction::ReadDetextorConfiguration Method
void AnnularCsI::ReadConfiguration(NPL::InputParser parser){
vector<NPL::InputBlock*> blocks = parser.GetAllBlocksWithToken("AnnularCsI");
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << "//// " << blocks.size() << " detectors found " << endl;
vector<string> cart = {"POS","Shape"};
vector<string> sphe = {"R","Theta","Phi","Shape"};
for(unsigned int i = 0 ; i < blocks.size() ; i++){
if(blocks[i]->HasTokenList(cart)){
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << endl << "//// AnnularCsI " << i+1 << endl;
G4ThreeVector Pos = NPS::ConvertVector(blocks[i]->GetTVector3("POS","mm"));
string Shape = blocks[i]->GetString("Shape");
AddDetector(Pos,Shape);
}
else if(blocks[i]->HasTokenList(sphe)){
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << endl << "//// AnnularCsI " << i+1 << endl;
double R = blocks[i]->GetDouble("R","mm");
double Theta = blocks[i]->GetDouble("Theta","deg");
double Phi = blocks[i]->GetDouble("Phi","deg");
string Shape = blocks[i]->GetString("Shape");
AddDetector(R,Theta,Phi,Shape);
}
else{
cout << "ERROR: check your input file formatting " << endl;
exit(1);
}
}
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Construct detector and inialise sensitive part.
// Called After DetecorConstruction::AddDetector Method
void AnnularCsI::ConstructDetector(G4LogicalVolume* world){
for (unsigned short i = 0 ; i < m_R.size() ; i++) {
G4double wX = m_R[i] * sin(m_Theta[i] ) * cos(m_Phi[i] ) ;
G4double wY = m_R[i] * sin(m_Theta[i] ) * sin(m_Phi[i] ) ;
G4double wZ = m_R[i] * cos(m_Theta[i] ) ;
G4ThreeVector Det_pos = G4ThreeVector(wX, wY, wZ) ;
// So the face of the detector is at R instead of the middle
Det_pos+=Det_pos.unit()*AnnularCsI_NS::Thickness*0.5;
// Building Detector reference frame
G4double ii = cos(m_Theta[i]) * cos(m_Phi[i]);
G4double jj = cos(m_Theta[i]) * sin(m_Phi[i]);
G4double kk = -sin(m_Theta[i]);
G4ThreeVector Y(ii,jj,kk);
G4ThreeVector w = Det_pos.unit();
G4ThreeVector u = w.cross(Y);
G4ThreeVector v = w.cross(u);
v = v.unit();
u = u.unit();
G4RotationMatrix* Rot = new G4RotationMatrix(u,v,w);
if(m_Shape[i] == "Cylindrical"){
new G4PVPlacement(G4Transform3D(*Rot,Det_pos),
BuildCylindricalDetector(),
"AnnularCsI",world,false,i+1);
}
else if(m_Shape[i] == "Square"){
new G4PVPlacement(G4Transform3D(*Rot,Det_pos),
BuildSquareDetector(),
"AnnularCsI",world,false,i+1);
}
}
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Add Detector branch to the EventTree.
// Called After DetecorConstruction::AddDetector Method
void AnnularCsI::InitializeRootOutput(){
RootOutput *pAnalysis = RootOutput::getInstance();
TTree *pTree = pAnalysis->GetTree();
if(!pTree->FindBranch("AnnularCsI")){
pTree->Branch("AnnularCsI", "TAnnularCsIData", &m_Event) ;
}
pTree->SetBranchAddress("AnnularCsI", &m_Event) ;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
// Read sensitive part and fill the Root tree.
// Called at in the EventAction::EndOfEventAvtion
void AnnularCsI::ReadSensitive(const G4Event* event){
m_Event->Clear();
///////////
// Calorimeter scorer
NPS::HitsMap<G4double*>* CaloHitMap;
std::map<G4int, G4double**>::iterator Calo_itr;
G4int CaloCollectionID = G4SDManager::GetSDMpointer()->GetCollectionID("AnnularCsIScorer/Calorimeter");
CaloHitMap = (NPS::HitsMap<G4double*>*)(event->GetHCofThisEvent()->GetHC(CaloCollectionID));
// Loop on the Calo map
for (Calo_itr = CaloHitMap->GetMap()->begin() ; Calo_itr != CaloHitMap->GetMap()->end() ; Calo_itr++){
G4double* Info = *(Calo_itr->second);
double Energy = RandGauss::shoot(Info[0],AnnularCsI_NS::ResoEnergy);
if(Energy>AnnularCsI_NS::EnergyThreshold){
double Time = RandGauss::shoot(Info[1],AnnularCsI_NS::ResoTime);
int DetectorNbr = (int) Info[2];
m_Event->SetEnergy(DetectorNbr,Energy);
m_Event->SetTime(DetectorNbr,Time);
}
}
// clear map for next event
CaloHitMap->clear();
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
////////////////////////////////////////////////////////////////
void AnnularCsI::InitializeScorers() {
// This check is necessary in case the geometry is reloaded
bool already_exist = false;
m_AnnularCsIScorer = CheckScorer("AnnularCsIScorer",already_exist) ;
if(already_exist)
return ;
// Otherwise the scorer is initialised
vector<int> level; level.push_back(0);
G4VPrimitiveScorer* Calorimeter= new CALORIMETERSCORERS::PS_Calorimeter("Calorimeter",level, 0) ;
//and register it to the multifunctionnal detector
m_AnnularCsIScorer->RegisterPrimitive(Calorimeter);
G4SDManager::GetSDMpointer()->AddNewDetector(m_AnnularCsIScorer) ;
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
////////////////////////////////////////////////////////////////////////////////
// Construct Method to be pass to the DetectorFactory //
////////////////////////////////////////////////////////////////////////////////
NPS::VDetector* AnnularCsI::Construct(){
return (NPS::VDetector*) new AnnularCsI();
}
//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
////////////////////////////////////////////////////////////////////////////////
// Registering the construct method to the factory //
////////////////////////////////////////////////////////////////////////////////
extern"C" {
class proxy_nps_AnnularCsI{
public:
proxy_nps_AnnularCsI(){
NPS::DetectorFactory::getInstance()->AddToken("AnnularCsI","AnnularCsI");
NPS::DetectorFactory::getInstance()->AddDetector("AnnularCsI",AnnularCsI::Construct);
}
};
proxy_nps_AnnularCsI p_nps_AnnularCsI;
}
#ifndef AnnularCsI_h
#define AnnularCsI_h 1
/*****************************************************************************
* Copyright (C) 2009-2018 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Greg Christian contact address: gchristian@tamu.edu *
* *
* Creation Date : March 2018 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class describe AnnularCsI simulation *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
*****************************************************************************/
// C++ header
#include <string>
#include <vector>
using namespace std;
// G4 headers
#include "G4ThreeVector.hh"
#include "G4RotationMatrix.hh"
#include "G4LogicalVolume.hh"
#include "G4MultiFunctionalDetector.hh"
// NPTool header
#include "NPSVDetector.hh"
#include "TAnnularCsIData.h"
#include "NPInputParser.h"
class AnnularCsI : public NPS::VDetector{
////////////////////////////////////////////////////
/////// Default Constructor and Destructor /////////
////////////////////////////////////////////////////
public:
AnnularCsI() ;
virtual ~AnnularCsI() ;
////////////////////////////////////////////////////
/////// Specific Function of this Class ///////////
////////////////////////////////////////////////////
public:
// Cartesian
void AddDetector(G4ThreeVector POS, string Shape);
// Spherical
void AddDetector(double R,double Theta,double Phi,string Shape);
G4LogicalVolume* BuildSquareDetector();
G4LogicalVolume* BuildCylindricalDetector();
private:
G4LogicalVolume* m_SquareDetector;
G4LogicalVolume* m_CylindricalDetector;
////////////////////////////////////////////////////
////// Inherite from NPS::VDetector class /////////
////////////////////////////////////////////////////
public:
// Read stream at Configfile to pick-up parameters of detector (Position,...)
// Called in DetecorConstruction::ReadDetextorConfiguration Method
void ReadConfiguration(NPL::InputParser) ;
// Construct detector and inialise sensitive part.
// Called After DetecorConstruction::AddDetector Method
void ConstructDetector(G4LogicalVolume* world) ;
// Add Detector branch to the EventTree.
// Called After DetecorConstruction::AddDetector Method
void InitializeRootOutput() ;
// Read sensitive part and fill the Root tree.
// Called at in the EventAction::EndOfEventAvtion
void ReadSensitive(const G4Event* event) ;
public: // Scorer
// Initialize all Scorer used by the MUST2Array
void InitializeScorers() ;
// Associated Scorer
G4MultiFunctionalDetector* m_AnnularCsIScorer ;
////////////////////////////////////////////////////
///////////Event class to store Data////////////////
////////////////////////////////////////////////////
private:
TAnnularCsIData* m_Event ;
////////////////////////////////////////////////////
///////////////Private intern Data//////////////////
////////////////////////////////////////////////////
private: // Geometry
// Detector Coordinate
vector<double> m_R;
vector<double> m_Theta;
vector<double> m_Phi;
// Shape type
vector<string> m_Shape ;
// Visualisation Attribute
G4VisAttributes* m_VisSquare;
G4VisAttributes* m_VisCylinder;
// Needed for dynamic loading of the library
public:
static NPS::VDetector* Construct();
};
#endif
add_library(NPSAnnularCsI SHARED AnnularCsI.cc)
target_link_libraries(NPSAnnularCsI NPSCore ${ROOT_LIBRARIES} ${Geant4_LIBRARIES} ${NPLib_LIBRARIES} -lNPAnnularCsI)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment