Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*****************************************************************************
* Copyright (C) 2009-2020 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Pierre Morfouace contact address: pierre.morfouace2@cea.fr *
* *
* Creation Date : May 2020 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold PISTA Treated data *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
* *
*****************************************************************************/
#include "TPISTAPhysics.h"
// STL
#include <sstream>
#include <iostream>
#include <cmath>
#include <stdlib.h>
#include <limits>
using namespace std;
// NPL
#include "RootInput.h"
#include "RootOutput.h"
#include "NPDetectorFactory.h"
#include "NPOptionManager.h"
// ROOT
#include "TChain.h"
ClassImp(TPISTAPhysics)
///////////////////////////////////////////////////////////////////////////
TPISTAPhysics::TPISTAPhysics(){
EventMultiplicity = 0;
m_EventData = new TPISTAData;
m_PreTreatedData = new TPISTAData;
m_EventPhysics = this;
m_Spectra = NULL;
m_E_RAW_Threshold = 0; // adc channels
m_E_Threshold = 0; // MeV
m_NumberOfDetectors = 0;
m_MaximumStripMultiplicityAllowed = 10;
m_StripEnergyMatching = 0.050;
}
///////////////////////////////////////////////////////////////////////////
/// A usefull method to bundle all operation to add a detector
// In That simple case nothing is done
// Typically for more complex detector one would calculate the relevant
// positions (stripped silicon) or angles (gamma array)
m_NumberOfDetectors++;
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::AddDetector(double R, double Theta, double Phi){
m_NumberOfDetectors++;
double Height = 61.8; // mm
double Base = 78.1; // mm
double NumberOfStripsY = 97;
double StripPitchHeight = Height / NumberOfStripsY; // mm
double StripPitchBase = Base / NumberOfStripsX; // mm
// Vector U on detector face (parallel to Y strips) Y strips are along X axis
TVector3 U;
// Vector V on detector face (parallel to X strips)
TVector3 V;
// Vector W normal to detector face (pointing to the back)
TVector3 W;
// Vector C position of detector face center
TVector3 C;
C = TVector3(R*sin(Theta)*cos(Phi),
R*sin(Theta)*sin(Phi),
TVector3 P = TVector3(cos(Theta)*cos(Phi),
cos(Theta)*sin(Phi),
-sin(Theta));
W = C.Unit();
U = W.Cross(P);
V = W.Cross(U);
U = U.Unit();
V = V.Unit();
vector<double> lineX;
vector<double> lineY;
vector<double> lineZ;
vector<vector<double>> OneDetectorStripPositionX;
vector<vector<double>> OneDetectorStripPositionY;
vector<vector<double>> OneDetectorStripPositionZ;
double X, Y, Z;
// Moving C to the 1.1 Corner;
TVector3 Strip_1_1;
Strip_1_1 = C - (0.5*Base*U + 0.5*Height*V) + U*(StripPitchBase / 2.) + V*(StripPitchHeight / 2.);
TVector3 StripPos;
for(int i=0; i<NumberOfStripsX; i++){
lineX.clear();
lineY.clear();
lineZ.clear();
for(int j=0; j<NumberOfStripsY; j++){
StripPos = Strip_1_1 + i*U*StripPitchBase + j*V*StripPitchHeight;
lineX.push_back(StripPos.X());
lineY.push_back(StripPos.Y());
lineZ.push_back(StripPos.Z());
}
OneDetectorStripPositionX.push_back(lineX);
OneDetectorStripPositionY.push_back(lineY);
OneDetectorStripPositionZ.push_back(lineZ);
}
m_StripPositionX.push_back(OneDetectorStripPositionX);
m_StripPositionY.push_back(OneDetectorStripPositionY);
m_StripPositionZ.push_back(OneDetectorStripPositionZ);
///////////////////////////////////////////////////////////////////////////
TVector3 TPISTAPhysics::GetPositionOfInteraction(const int i){
TVector3 Position = TVector3(GetStripPositionX(DetectorNumber[i], E_Strip[i], DE_Strip[i]),
GetStripPositionY(DetectorNumber[i], E_Strip[i], DE_Strip[i]),
GetStripPositionZ(DetectorNumber[i], E_Strip[i], DE_Strip[i]));
/*TVector3 Position = TVector3(GetStripPositionX(DetectorNumber[i], DE_StripX[i], E_StripY[i]),
GetStripPositionY(DetectorNumber[i], DE_StripX[i], E_StripY[i]),
GetStripPositionZ(DetectorNumber[i], DE_StripX[i], E_StripY[i]));
*/
return Position;
}
///////////////////////////////////////////////////////////////////////////
TVector3 TPISTAPhysics::GetDetectorNormal(const int i){
TVector3 U = TVector3(GetStripPositionX(DetectorNumber[i],62,1),
GetStripPositionY(DetectorNumber[i],62,1),
GetStripPositionZ(DetectorNumber[i],62,1))
-TVector3(GetStripPositionX(DetectorNumber[i],62,1),
GetStripPositionY(DetectorNumber[i],62,1),
GetStripPositionZ(DetectorNumber[i],62,1));
TVector3 V = TVector3(GetStripPositionX(DetectorNumber[i],62,97),
GetStripPositionY(DetectorNumber[i],62,97),
GetStripPositionZ(DetectorNumber[i],62,97))
-TVector3(GetStripPositionX(DetectorNumber[i],62,1),
GetStripPositionY(DetectorNumber[i],62,1),
GetStripPositionZ(DetectorNumber[i],62,1));
TVector3 Normal = U.Cross(V);
return (Normal.Unit());
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::BuildSimplePhysicalEvent() {
BuildPhysicalEvent();
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::BuildPhysicalEvent() {
// apply thresholds and calibration
PreTreat();
//vector<TVector2> couple = Match_X_Y();
//EventMultiplicity = couple.size();
int DEMult = m_PreTreatedData->GetPISTADEMult();
int EMult = m_PreTreatedData->GetPISTAEMult();
for(unsigned int i=0; i<DEMult; i++){
for(unsigned int j=0; j<EMult; j++){
int DE_DetNbr = m_PreTreatedData->GetPISTA_DE_DetectorNbr(i);
int E_DetNbr = m_PreTreatedData->GetPISTA_E_DetectorNbr(j);
if(DE_DetNbr==E_DetNbr){
int DE_StripNbr = m_PreTreatedData->GetPISTA_DE_StripNbr(i);
int E_StripNbr = m_PreTreatedData->GetPISTA_E_StripNbr(j);
// Taking Strip energy for DE
double DE_Energy = m_PreTreatedData->GetPISTA_DE_StripEnergy(i);
// Taking BAck Energy for E
double E_Energy = m_PreTreatedData->GetPISTA_E_BackEnergy(j);
double E_Time = m_PreTreatedData->GetPISTA_E_BackTime(j);
DetectorNumber.push_back(DE_DetNbr);
DE_Strip.push_back(DE_StripNbr);
E_Strip.push_back(E_StripNbr);
DE.push_back(DE_Energy);
E.push_back(E_Energy);
Time.push_back(E_Time);
PosX.push_back(GetPositionOfInteraction(i).x());
PosY.push_back(GetPositionOfInteraction(i).y());
PosZ.push_back(GetPositionOfInteraction(i).z());
}
}
}
EventMultiplicity = DetectorNumber.size();
}
///////////////////////////////////////////////////////////////////////////
vector<TVector2> TPISTAPhysics::Match_X_Y(){
vector<TVector2> ArrayOfGoodCouple;
static unsigned int m_DEMult, m_EMult;
m_DEMult = m_PreTreatedData->GetPISTADEMult();
m_EMult = m_PreTreatedData->GetPISTAEMult();
if(m_DEMult>m_MaximumStripMultiplicityAllowed || m_EMult>m_MaximumStripMultiplicityAllowed){
return ArrayOfGoodCouple;
}
return ArrayOfGoodCouple;
}
///////////////////////////////////////////////////////////////////////////
int TPISTAPhysics::CheckEvent(){
// Check the size of the different elements
if(m_PreTreatedData->GetPISTADEMult() == m_PreTreatedData->GetPISTAEMult() )
return 1;
else
return -1;
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::PreTreat() {
// This method typically applies thresholds and calibrations
// Might test for disabled channels for more complex detector
// clear pre-treated object
ClearPreTreatedData();
// instantiate CalibrationManager
static CalibrationManager* Cal = CalibrationManager::getInstance();
// DE
unsigned int sizeDE = m_EventData->GetPISTADEMult();
for (UShort_t i = 0; i < sizeDE ; ++i) {
if (m_EventData->GetPISTA_DE_StripEnergy(i) > m_E_RAW_Threshold) {
int DetNbr = m_EventData->GetPISTA_DE_DetectorNbr(i);
int StripNbr = m_EventData->GetPISTA_DE_StripNbr(i);
double StripE = m_EventData->GetPISTA_DE_StripEnergy(i);
double BackE = m_EventData->GetPISTA_DE_BackEnergy(i);
double StripT = m_EventData->GetPISTA_DE_StripTime(i);
double BackT = m_EventData->GetPISTA_DE_BackTime(i);
//StripE = Cal->ApplyCalibration("PISTA/ENERGY"+NPL::itoa(m_EventData->GetFirstStage_XE_DetectorNbr(i)),m_EventData->GetFirstStage_XE_Energy(i));
if (StripE > m_E_Threshold) {
m_PreTreatedData->SetPISTA_DE(DetNbr, StripNbr, StripE, BackE, StripT, BackT);
// E
unsigned int sizeE = m_EventData->GetPISTAEMult();
for (UShort_t i = 0; i < sizeE ; ++i) {
if (m_EventData->GetPISTA_E_StripEnergy(i) > m_E_RAW_Threshold) {
int DetNbr = m_EventData->GetPISTA_E_DetectorNbr(i);
int StripNbr = m_EventData->GetPISTA_E_StripNbr(i);
double StripE = m_EventData->GetPISTA_E_StripEnergy(i);
double BackE = m_EventData->GetPISTA_E_BackEnergy(i);
double StripT = m_EventData->GetPISTA_E_StripTime(i);
double BackT = m_EventData->GetPISTA_E_BackTime(i);
//StripE = Cal->ApplyCalibration("PISTA/ENERGY"+NPL::itoa(m_EventData->GetFirstStage_XE_DetectorNbr(i)),m_EventData->GetFirstStage_XE_Energy(i));
if (StripE > m_E_Threshold) {
m_PreTreatedData->SetPISTA_E(DetNbr, StripNbr, StripE, BackE, StripT, BackT);
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::ReadAnalysisConfig() {
bool ReadingStatus = false;
// path to file
string FileName = "./configs/ConfigPISTA.dat";
// open analysis config file
ifstream AnalysisConfigFile;
AnalysisConfigFile.open(FileName.c_str());
if (!AnalysisConfigFile.is_open()) {
cout << " No ConfigPISTA.dat found: Default parameter loaded for Analayis " << FileName << endl;
return;
}
cout << " Loading user parameter for Analysis from ConfigPISTA.dat " << endl;
// Save it in a TAsciiFile
TAsciiFile* asciiConfig = RootOutput::getInstance()->GetAsciiFileAnalysisConfig();
asciiConfig->AppendLine("%%% ConfigPISTA.dat %%%");
asciiConfig->Append(FileName.c_str());
asciiConfig->AppendLine("");
// read analysis config file
string LineBuffer,DataBuffer,whatToDo;
while (!AnalysisConfigFile.eof()) {
// Pick-up next line
getline(AnalysisConfigFile, LineBuffer);
// search for "header"
string name = "ConfigPISTA";
if (LineBuffer.compare(0, name.length(), name) == 0)
ReadingStatus = true;
// loop on tokens and data
while (ReadingStatus ) {
whatToDo="";
AnalysisConfigFile >> whatToDo;
// Search for comment symbol (%)
if (whatToDo.compare(0, 1, "%") == 0) {
AnalysisConfigFile.ignore(numeric_limits<streamsize>::max(), '\n' );
}
else if (whatToDo=="E_RAW_THRESHOLD") {
AnalysisConfigFile >> DataBuffer;
m_E_RAW_Threshold = atof(DataBuffer.c_str());
cout << whatToDo << " " << m_E_RAW_Threshold << endl;
}
else if (whatToDo=="E_THRESHOLD") {
AnalysisConfigFile >> DataBuffer;
m_E_Threshold = atof(DataBuffer.c_str());
cout << whatToDo << " " << m_E_Threshold << endl;
}
else {
ReadingStatus = false;
}
}
}
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::Clear() {
EventMultiplicity = 0;
// Position Information
PosX.clear();
PosY.clear();
PosZ.clear();
DetectorNumber.clear();
DE_Strip.clear();
E_Strip.clear();
Time.clear();
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::ReadConfiguration(NPL::InputParser parser) {
vector<NPL::InputBlock*> blocks = parser.GetAllBlocksWithToken("PISTA");
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << "//// " << blocks.size() << " detectors found " << endl;
vector<string> cart = {"POS"};
vector<string> sphe = {"R","Theta","Phi"};
for(unsigned int i = 0 ; i < blocks.size() ; i++){
if(blocks[i]->HasTokenList(cart)){
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << endl << "//// PISTA " << i+1 << endl;
TVector3 Pos = blocks[i]->GetTVector3("POS","mm");
}
else if(blocks[i]->HasTokenList(sphe)){
if(NPOptionManager::getInstance()->GetVerboseLevel())
cout << endl << "//// PISTA " << i+1 << endl;
double R = blocks[i]->GetDouble("R","mm");
double Theta = blocks[i]->GetDouble("Theta","deg");
double Phi = blocks[i]->GetDouble("Phi","deg");
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
}
else{
cout << "ERROR: check your input file formatting " << endl;
exit(1);
}
}
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::InitSpectra() {
m_Spectra = new TPISTASpectra(m_NumberOfDetectors);
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::FillSpectra() {
m_Spectra -> FillRawSpectra(m_EventData);
m_Spectra -> FillPreTreatedSpectra(m_PreTreatedData);
m_Spectra -> FillPhysicsSpectra(m_EventPhysics);
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::CheckSpectra() {
m_Spectra->CheckSpectra();
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::ClearSpectra() {
// To be done
}
///////////////////////////////////////////////////////////////////////////
map< string , TH1*> TPISTAPhysics::GetSpectra() {
if(m_Spectra)
return m_Spectra->GetMapHisto();
else{
map< string , TH1*> empty;
return empty;
}
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::WriteSpectra() {
m_Spectra->WriteSpectra();
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::AddParameterToCalibrationManager() {
CalibrationManager* Cal = CalibrationManager::getInstance();
for (int i = 0; i < m_NumberOfDetectors; ++i) {
Cal->AddParameter("PISTA", "D"+ NPL::itoa(i+1)+"_ENERGY","PISTA_D"+ NPL::itoa(i+1)+"_ENERGY");
Cal->AddParameter("PISTA", "D"+ NPL::itoa(i+1)+"_TIME","PISTA_D"+ NPL::itoa(i+1)+"_TIME");
}
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::InitializeRootInputRaw() {
TChain* inputChain = RootInput::getInstance()->GetChain();
inputChain->SetBranchStatus("PISTA", true );
inputChain->SetBranchAddress("PISTA", &m_EventData );
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::InitializeRootInputPhysics() {
TChain* inputChain = RootInput::getInstance()->GetChain();
inputChain->SetBranchAddress("PISTA", &m_EventPhysics);
}
///////////////////////////////////////////////////////////////////////////
void TPISTAPhysics::InitializeRootOutput() {
TTree* outputTree = RootOutput::getInstance()->GetTree();
outputTree->Branch("PISTA", "TPISTAPhysics", &m_EventPhysics);
}
////////////////////////////////////////////////////////////////////////////////
// Construct Method to be pass to the DetectorFactory //
////////////////////////////////////////////////////////////////////////////////
NPL::VDetector* TPISTAPhysics::Construct() {
return (NPL::VDetector*) new TPISTAPhysics();
}
////////////////////////////////////////////////////////////////////////////////
// Registering the construct method to the factory //
////////////////////////////////////////////////////////////////////////////////
extern "C"{
class proxy_PISTA{
public:
proxy_PISTA(){
NPL::DetectorFactory::getInstance()->AddToken("PISTA","PISTA");
NPL::DetectorFactory::getInstance()->AddDetector("PISTA",TPISTAPhysics::Construct);
}
};