Newer
Older
/*****************************************************************************
* Copyright (C) 2009-2016 this file is part of the NPTool Project *
* *
* For the licensing terms see $NPTOOL/Licence/NPTool_Licence *
* For the list of contributors see $NPTOOL/Licence/Contributors *
*****************************************************************************/
/*****************************************************************************
* Original Author: Sandra GIRON contact address: giron@ipno.in2p3.fr *
* Benjamin LE CROM lecrom@ipno.in2p3.fr *
* Creation Date : march 2014 *
* Last update : *
*---------------------------------------------------------------------------*
* Decription: *
* This class hold exogam treated data *
* *
*---------------------------------------------------------------------------*
* Comment: *
* *
*****************************************************************************/
#include "TExogamPhysics.h"
using namespace EXOGAM_LOCAL;

GIRARD ALCINDOR Valérian
committed
// STL
#include <cmath>

GIRARD ALCINDOR Valérian
committed
#include <iostream>
#include <sstream>
#include <stdlib.h>
Hugo Jacob
committed
#include <functional>
// NPL
#include "NPOptionManager.h"

GIRARD ALCINDOR Valérian
committed
#include "NPVDetector.h"
#include "RootInput.h"
#include "RootOutput.h"
// ROOT
#include "TChain.h"
///////////////////////////////////////////////////////////////////////////
ClassImp(TExogamPhysics)

GIRARD ALCINDOR Valérian
committed
///////////////////////////////////////////////////////////////////////////
TExogamPhysics::TExogamPhysics() {
m_Spectra = NULL;
Hugo Jacob
committed
m_EXO_E_RAW_Threshold = 0;
m_EXO_E_Threshold = 0;
m_EXO_EHG_RAW_Threshold = 0;
m_EXO_TDC_RAW_Threshold = 0;
m_ExoTDC_HighThreshold = 0;
m_ExoTDC_LowThreshold = 0;
m_EXO_OuterUp_RAW_Threshold = 1e5;

GIRARD ALCINDOR Valérian
committed
m_PreTreatedData = new TExogamData;
m_EventData = new TExogamData;
m_EventPhysics = this;

GIRARD ALCINDOR Valérian
committed
///////////////////////////////////////////////////////////////////////////

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::BuildSimplePhysicalEvent() { BuildPhysicalEvent(); }
///////////////////////////////////////////////////////////////////////////

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::PreTreat() {
Hugo Jacob
committed
// Clearing PreTreat TExogamData
ClearPreTreatedData();

GIRARD ALCINDOR Valérian
committed
//E
Hugo Jacob
committed
m_EXO_Mult = m_EventData->GetExoMult();
for (unsigned int i = 0; i < m_EXO_Mult; ++i) {
Hugo Jacob
committed
if (m_EventData->GetExoE(i) > m_EXO_E_RAW_Threshold)
EXO_E = fEXO_E(m_EventData, i);
Hugo Jacob
committed
if (m_EventData->GetExoEHG(i) > m_EXO_EHG_RAW_Threshold)
EXO_EHG = fEXO_EHG(m_EventData, i);
if (m_EventData->GetExoTDC(i) > m_EXO_TDC_RAW_Threshold)
EXO_TDC = fEXO_T(m_EventData, i);
if (m_EventData->GetExoOuter1(i) < m_EXO_OuterUp_RAW_Threshold)
EXO_Outer1 = fEXO_Outer(m_EventData, i, 0);
else
EXO_Outer1 = 0;
Hugo Jacob
committed
if (m_EventData->GetExoOuter2(i) < m_EXO_OuterUp_RAW_Threshold)
EXO_Outer2 = fEXO_Outer(m_EventData, i, 1);
else
EXO_Outer2 = 0;
if (m_EventData->GetExoOuter3(i) < m_EXO_OuterUp_RAW_Threshold)
EXO_Outer3 = fEXO_Outer(m_EventData, i, 2);
else
EXO_Outer3 = 0;
if (m_EventData->GetExoOuter4(i) < m_EXO_OuterUp_RAW_Threshold)
EXO_Outer4 = fEXO_Outer(m_EventData, i, 3);
else
EXO_Outer4 = 0;
// *1000 to convert MeV into keV
Hugo Jacob
committed
if(EXO_E > m_EXO_E_Threshold){
m_PreTreatedData->SetExo(m_EventData->GetExoCrystal(i), EXO_E*1000,
EXO_EHG*1000, m_EventData->GetExoTS(i), EXO_TDC,
m_EventData->GetExoBGO(i), m_EventData->GetExoCsI(i), EXO_Outer1*1000,
EXO_Outer2*1000, EXO_Outer3*1000, EXO_Outer4*1000);
Hugo Jacob
committed
}

GIRARD ALCINDOR Valérian
committed
}
}
///////////////////////////////////////////////////////////////////////////
Hugo Jacob
committed
void TExogamPhysics::ResetPreTreatVariable(){
EXO_E = -1000;
EXO_EHG = -1000;
EXO_TDC = -1000;
EXO_Outer1 = -1000;
EXO_Outer2 = -1000;
EXO_Outer3 = -1000;
EXO_Outer4 = -1000;
}

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::BuildPhysicalEvent() {
if (NPOptionManager::getInstance()->IsReader() == true) {
m_EventData = &(**r_ReaderEventData);
}
// std::cout << m_EventData << std::endl;
Hugo Jacob
committed
// This maps stores ID of events sorted by flange number. Map key is flange nbr, vector should contain ID of events
std::map<unsigned int,std::vector<unsigned int>> HitsID;
for(unsigned int i = 0; i < m_PreTreatedData->GetExoMult(); i++){
// Asking good TDC prompt
if(TDCMatch(i)){
// Doing flange and crystal matching
flange_nbr = MapCrystalFlangeCLover[m_PreTreatedData->GetExoCrystal(i)].first;
crystal_nbr = MapCrystalFlangeCLover[m_PreTreatedData->GetExoCrystal(i)].second;
E.push_back(m_PreTreatedData->GetExoE(i));
EHG.push_back(m_PreTreatedData->GetExoEHG(i));
Outer1.push_back(m_PreTreatedData->GetExoOuter1(i));
Outer2.push_back(m_PreTreatedData->GetExoOuter2(i));
Outer3.push_back(m_PreTreatedData->GetExoOuter3(i));
Outer4.push_back(m_PreTreatedData->GetExoOuter4(i));
TDC.push_back(m_PreTreatedData->GetExoTDC(i));
TS.push_back(m_PreTreatedData->GetExoTS(i));
Flange.push_back(flange_nbr);
Crystal.push_back(crystal_nbr);

GIRARD ALCINDOR Valérian
committed
// Now that HitsID is full, we use it to process simple AddBack of events in the same flange
// Basically looping on all flanges, then on al events ID in each flange
for(auto it = HitsID.begin(); it != HitsID.end(); it++){
double E_AddBack = 0;
double E_Max = 0;
unsigned int Id_Max = 0;
for(auto itvec = (*it).second.begin(); itvec !=(*it).second.end(); itvec++){
E_AddBack+= m_PreTreatedData->GetExoE(*itvec);
if(E_Max < m_PreTreatedData->GetExoE(*itvec)){
E_Max = m_PreTreatedData->GetExoE(*itvec);
Id_Max = *itvec;
}
// Doing it again for this loop, it's a bit unhappy but didnt find a better way to do it yet
flange_nbr = (*it).first;
crystal_nbr = MapCrystalFlangeCLover[m_PreTreatedData->GetExoCrystal(Id_Max)].second;
// Adding all AddBack (AB) related stuff
E_AB.push_back(E_AddBack);
Flange_AB.push_back(flange_nbr);
Size_AB.push_back((*it).second.size());
TDC_AB.push_back(m_PreTreatedData->GetExoTDC(Id_Max));
TS_AB.push_back(m_PreTreatedData->GetExoTS(Id_Max));
// Adding these parameters for Doppler correction purposes (D)
int MaxOuterId = GetMaxOuter(Id_Max);
Exogam_struc = Ask_For_Angles(flange_nbr, ComputeMeanFreePath(E_AddBack));
double Theta_seg = Exogam_struc.Theta_Crystal_Seg[crystal_nbr][MaxOuterId];
double Phi_seg = Exogam_struc.Phi_Crystal_Seg[crystal_nbr][MaxOuterId];
Theta.push_back(Theta_seg);
Phi.push_back(Phi_seg);
bool TExogamPhysics::TDCMatch(unsigned int event){
return m_PreTreatedData->GetExoTDC(event) > m_ExoTDC_LowThreshold && m_PreTreatedData->GetExoTDC(event) < m_ExoTDC_HighThreshold;
}
int TExogamPhysics::GetMaxOuter(unsigned int EventId){
// somehow starting at 50 to get something equivalent to a 50keV threshold
double OuterMax = 50;
if(m_PreTreatedData->GetExoOuter1(EventId) > OuterMax){
OuterMax = m_PreTreatedData->GetExoOuter1(EventId);
if(m_PreTreatedData->GetExoOuter2(EventId) > OuterMax){
OuterMax = m_PreTreatedData->GetExoOuter2(EventId);

GIRARD ALCINDOR Valérian
committed
}
if(m_PreTreatedData->GetExoOuter3(EventId) > OuterMax){
OuterMax = m_PreTreatedData->GetExoOuter3(EventId);

GIRARD ALCINDOR Valérian
committed
}
if(m_PreTreatedData->GetExoOuter4(EventId) > OuterMax){
OuterMax = m_PreTreatedData->GetExoOuter4(EventId);

GIRARD ALCINDOR Valérian
committed
}
double TExogamPhysics::GetDoppler(double Energy, unsigned int Flange, unsigned int Crystal, unsigned int Outer){
Exogam_struc = Ask_For_Angles(Flange, ComputeMeanFreePath(Energy));
double Theta_seg = Exogam_struc.Theta_Crystal_Seg[Crystal][Outer];
double Phi_seg = Exogam_struc.Phi_Crystal_Seg[Crystal][Outer];
return Doppler_Correction(Theta_seg,Phi_seg,0,0,Beta,Energy);

GIRARD ALCINDOR Valérian
committed
}
Hugo Jacob
committed
double TExogamPhysics::ComputeMeanFreePath(double Energy){
auto b = Map_PhotonCS.lower_bound(Energy);
auto a = prev(b);
if(b == Map_PhotonCS.begin()){
a = b;
b++;
}
else if(b == Map_PhotonCS.end()){
b--;
a = prev(b);
}
double coeff = (Energy - a->first)/(b->first - a->first);
double PhotonCrossSection = a->second + coeff*(b->second - a->second); // mm2/g
return 1./(GeDensity*PhotonCrossSection);
}
// unsigned int TExogamPhysics::GetFlangeNbr(unsigned int crystal_nbr){
// }

GIRARD ALCINDOR Valérian
committed
double TExogamPhysics::DopplerCorrection(double E, double Theta) {
double Pi = 3.141592654;
TString filename = "configs/beta.txt";
ifstream file;

GIRARD ALCINDOR Valérian
committed
// cout << filename << endl;
file.open(filename);

GIRARD ALCINDOR Valérian
committed
if (!file)
cout << filename << " was not opened" << endl;
double E_corr = 0;

GIRARD ALCINDOR Valérian
committed
double beta = 0.;
file >> beta;
double gamma = 1. / sqrt(1 - beta * beta);

GIRARD ALCINDOR Valérian
committed
E_corr = gamma * E * (1. - beta * cos(Theta * Pi / 180.));

GIRARD ALCINDOR Valérian
committed
return (E_corr);
}
///////////////////////////////////////////////////////////////////////////

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::Clear() {
// Exogam_struc = {};
E.clear();
EHG.clear();
Outer1.clear();
Outer2.clear();
Outer3.clear();
Outer4.clear();
Flange.clear();
Crystal.clear();
TDC.clear();
TS.clear();
Flange_AB.clear();
Size_AB.clear();
Crystal_AB.clear();
Outer_AB.clear();
Theta.clear();
Phi.clear();
TDC_AB.clear();
TS_AB.clear();
}
///////////////////////////////////////////////////////////////////////////

GIRARD ALCINDOR Valérian
committed
//// Innherited from VDetector Class ////
// Read stream at ConfigFile to pick-up parameters of detector (Position,...) using Token

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::ReadConfiguration(NPL::InputParser parser) {
vector<NPL::InputBlock*> blocks = parser.GetAllBlocksWithToken("Exogam");

GIRARD ALCINDOR Valérian
committed
if (NPOptionManager::getInstance()->GetVerboseLevel())
cout << "//// " << blocks.size() << " Exogam clover found " << endl;
// FIXME ANGLE FILE??? NOT SURE I GET IT...
// For Doppler I guess... Something like that should be added later
// But maybe the more stand R,THETA,PHI or X,Y,Z
// vector<string> token = {"ANGLE_FILE"};
vector<string> token = {"Board, Flange, Channel0, Channel1"};
// FIXME To be implemented in the future
// vector<string> token = {"Board, Flange, Channel0, Channel1, R, THETA, PHI"};
//for (unsigned int i = 0; i < blocks.size(); i++) {
// if (blocks[i]->HasTokenList(token)) {
// int Board, Flange, Channel0, Channel1; // FIXME!!!! Should come from Data...
// AddClover(Board, Flange, Channel0, Channel1);
// }
// else {
// cout << "ERROR: check your input file formatting " << endl;
// exit(1);
// }
//}
Hugo Jacob
committed
ReadAnalysisConfig();
Hugo Jacob
committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
void TExogamPhysics::ReadAnalysisConfig() {
bool ReadingStatus = false;
// path to photon cross section
string CSFilename = "../../Inputs/PhotonCrossSection/CoherentGe.xcom";
string LineBuffer;
ifstream CSFile;
CSFile.open(CSFilename.c_str());
if (!CSFile.is_open()) {
cout << " No CS file found "
<< CSFilename << endl;
return;
}
while(CSFile.good()){
double gammaE, CrossSection;
getline(CSFile, LineBuffer);
istringstream ss(LineBuffer);
ss >> gammaE >> CrossSection; // E in MeV, converted to keV, CrossSection in cm2/g
gammaE *= 1000.; // Convertion to keV
CrossSection *= 100.;
Map_PhotonCS[gammaE] = CrossSection;
}
// path to file
string FileName = "./configs/ConfigExogam.dat";
// open analysis config file
ifstream AnalysisConfigFile;
AnalysisConfigFile.open(FileName.c_str());
if (!AnalysisConfigFile.is_open()) {
cout << " No ConfigExogam.dat found: Default parameters loaded for "
"Analysis "
<< FileName << endl;
return;
}
string DataBuffer, whatToDo;
while (!AnalysisConfigFile.eof()) {
// Pick-up next line
getline(AnalysisConfigFile, LineBuffer);
// search for "header"
if (LineBuffer.compare(0, 12, "ConfigExogam") == 0)
Hugo Jacob
committed
ReadingStatus = true;
// loop on tokens and data
while (ReadingStatus) {
whatToDo = "";
AnalysisConfigFile >> whatToDo;
// Search for comment symbol (%)
if (whatToDo.compare(0, 1, "%") == 0) {
AnalysisConfigFile.ignore(numeric_limits<streamsize>::max(), '\n');
}
else if (whatToDo == "EXO_Threshold") {
//AnalysisConfigFile >> DataBuffer;
//m_MaximumStripMultiplicityAllowed = atoi(DataBuffer.c_str());
//cout << "MAXIMUN STRIP MULTIPLICITY " << m_MaximumStripMultiplicityAllowed << endl;
}
else if (whatToDo=="MAP_EXO") {
unsigned int CrystalNb;
unsigned int Flange;
unsigned int CrystalNb2;
AnalysisConfigFile >> DataBuffer;
CrystalNb = stoi(DataBuffer);
AnalysisConfigFile >> DataBuffer;
Flange = stoi(DataBuffer);
AnalysisConfigFile >> DataBuffer;
CrystalNb2 = stoi(DataBuffer);
MapCrystalFlangeCLover[CrystalNb] = std::make_pair(Flange,CrystalNb2);
// cout << whatToDo << " " << atoi(DataBuffer.substr(0,1).c_str()) << " " << atoi(DataBuffer.substr(1,1).c_str()) << endl;
}
else if (whatToDo == "TDC_THRESHOLDS") {
AnalysisConfigFile >> DataBuffer;
m_ExoTDC_LowThreshold = stoi(DataBuffer);
AnalysisConfigFile >> DataBuffer;
m_ExoTDC_HighThreshold = stoi(DataBuffer);
cout << "TDC Thresholds " << m_ExoTDC_LowThreshold << " " <<m_ExoTDC_HighThreshold << endl;
}
else{
ReadingStatus = false;
}
Hugo Jacob
committed
}
}
}
///////////////////////////////////////////////////////////////////////////

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::FillSpectra() {
m_Spectra->FillRawSpectra(m_EventData);
m_Spectra->FillPreTreatedSpectra(m_PreTreatedData);
m_Spectra->FillPhysicsSpectra(m_EventPhysics);
}
///////////////////////////////////////////////////////////////////////////

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::CheckSpectra() { m_Spectra->CheckSpectra(); }
///////////////////////////////////////////////////////////////////////////

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::ClearSpectra() {
// To be done
}
///////////////////////////////////////////////////////////////////////////

GIRARD ALCINDOR Valérian
committed
map<string, TH1*> TExogamPhysics::GetSpectra() {
if (m_Spectra)
return m_Spectra->GetMapHisto();

GIRARD ALCINDOR Valérian
committed
else {
map<string, TH1*> empty;
return empty;
}

GIRARD ALCINDOR Valérian
committed
}
//////////////////////////////////////////////////////////////////////////
void TExogamPhysics::AddClover(int Board, int Flange, int Channel0, int Channel1) {

GIRARD ALCINDOR Valérian
committed
}

GIRARD ALCINDOR Valérian
committed
// FIXME Legacy thing... Might delete later
//////////////////////////////////////////////////////////////////////////
// void TExogamPhysics::AddClover(string AngleFile) {
// ifstream file;
// // TString filename = Form("posBaptiste/angles_exogam_clover%d.txt",NumberOfClover);
// // TString filename = Form("posz42_simu50mm/angles_exogam_clover%d.txt",NumberOfClover);
// // TString filename = Form("posz42_exp_stat_demiring/angles_exogam_clover%d.txt",NumberOfClover);

GIRARD ALCINDOR Valérian
committed
// string path = "configs/";
// TString filename = path + AngleFile;
// cout << filename << endl;
// file.open(filename);
// if (!file)
// cout << filename << " was not opened" << endl;
// vector<double> Angles;
// vector<vector<double>> Segment_angles;
// vector<vector<vector<double>>> Cristal_angles;
// Cristal_angles.clear();

GIRARD ALCINDOR Valérian
committed
// double angle;
// string buffer;

GIRARD ALCINDOR Valérian
committed
// for (int i = 0; i < 4; i++) {
// Segment_angles.clear();

GIRARD ALCINDOR Valérian
committed
// for (int j = 0; j < 4; j++) {
// Angles.clear();

GIRARD ALCINDOR Valérian
committed
// for (int k = 0; k < 2; k++) {
// file >> buffer >> angle;

GIRARD ALCINDOR Valérian
committed
// Angles.push_back(angle); // Theta (k = 0) Phi (k = 1)
// // cout << angle << endl;
// if (Angles.size() == 2)
// cout << "Clover " << NumberOfClover << ": Theta=" << Angles[0] << " Phi=" << Angles[1] << endl;
// }

GIRARD ALCINDOR Valérian
committed
// Segment_angles.push_back(Angles);
// }
// Cristal_angles.push_back(Segment_angles);
// }
// Clover_Angles_Theta_Phi.push_back(Cristal_angles);
// file.close();
// NumberOfClover++;
// }
// Add Parameter to the CalibrationManger

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::AddParameterToCalibrationManager() {
CalibrationManager* Cal = CalibrationManager::getInstance();

GIRARD ALCINDOR Valérian
committed
for (auto it = MapCrystalFlangeCLover.begin(); it != MapCrystalFlangeCLover.end(); it++)
{ unsigned int i = it->first;
Cal->AddParameter("EXO", "E" + NPL::itoa(i),
"EXO_E" + NPL::itoa(i));
Cal->AddParameter("EXO", "EHG" + NPL::itoa(i),
"EXO_EHG" + NPL::itoa(i));
// Cal->AddParameter("EXOGAM", "Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_T",
// "EXOGAM_Cl" + NPL::itoa(i) + "_Cr" + NPL::itoa(j) + "_T");

GIRARD ALCINDOR Valérian
committed
for (int j = 0; j < 4; j++) {
Cal->AddParameter("EXO", "Outer" + NPL::itoa(i) + "_" + NPL::itoa(j),
"EXO_Outer" + NPL::itoa(i) + "_" + NPL::itoa(j));

GIRARD ALCINDOR Valérian
committed
}
}
// Activated associated Branches and link it to the private member DetectorData address
// In this method mother Branches (Detector) AND daughter leaf (fDetector_parameter) have to be activated

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::InitializeRootInputRaw() {
Hugo Jacob
committed
TChain* inputChain = RootInput::getInstance()->GetChain();
// Option to use the nptreereader anaysis
if (NPOptionManager::getInstance()->IsReader() == true) {
TTreeReader* inputTreeReader = RootInput::getInstance()->GetTreeReader();
inputTreeReader->SetTree(inputChain);
}
// Option to use the standard npanalysis
else{

GIRARD ALCINDOR Valérian
committed
TChain* inputChain = RootInput::getInstance()->GetChain();
inputChain->SetBranchStatus("Exogam", true);

GIRARD ALCINDOR Valérian
committed
inputChain->SetBranchStatus("fEXO_*", true);
inputChain->SetBranchAddress("Exogam", &m_EventData);
/*
TList* outputList = RootOutput::getInstance()->GetList();
clover_mult = new TH1F("clover_mult","clover_mult",20,0,20);
outputList->Add(clover_mult);
cristal_mult = new TH1F("cristal_mult","cristal_mult",20,0,20);
outputList->Add(cristal_mult);
*/
Hugo Jacob
committed
}
/////////////////////////////////////////////////////////////////////
// Activated associated Branches and link it to the private member DetectorPhysics address
// In this method mother Branches (Detector) AND daughter leaf (parameter) have to be activated
void TExogamPhysics::InitializeRootInputPhysics() {
Hugo Jacob
committed
TChain* inputChain = RootInput::getInstance()->GetChain();
// Option to use the nptreereader anaysis
if (NPOptionManager::getInstance()->IsReader() == true) {
TTreeReader* inputTreeReader = RootInput::getInstance()->GetTreeReader();
inputTreeReader->SetTree(inputChain);
}
// Option to use the standard npanalysis
else{
TChain* inputChain = RootInput::getInstance()->GetChain();

GIRARD ALCINDOR Valérian
committed
inputChain->SetBranchStatus("EventMultiplicty", true);
inputChain->SetBranchStatus("ECC_Multiplicity", true);
inputChain->SetBranchStatus("GOCCE_Multiplicity", true);
inputChain->SetBranchStatus("ECC_CloverNumber", true);
inputChain->SetBranchStatus("ECC_CristalNumber", true);
inputChain->SetBranchStatus("GOCCE_CloverNumber", true);
inputChain->SetBranchStatus("GOCCE_CristalNumber", true);
inputChain->SetBranchStatus("GOCCE_SegmentNumber", true);
inputChain->SetBranchStatus("ECC_E", true);
inputChain->SetBranchStatus("ECC_T", true);
inputChain->SetBranchStatus("GOCCE_E", true);
inputChain->SetBranchStatus("CristalNumber", true);
inputChain->SetBranchStatus("SegmentNumber", true);
inputChain->SetBranchStatus("CloverNumber", true);
inputChain->SetBranchStatus("CloverMult", true);
inputChain->SetBranchStatus("TotalEnergy_lab", true);
inputChain->SetBranchStatus("Time", true);
inputChain->SetBranchStatus("DopplerCorrectedEnergy", true);
inputChain->SetBranchStatus("Position", true);
inputChain->SetBranchStatus("Theta", true);
inputChain->SetBranchAddress("Exogam", &m_EventPhysics);
Hugo Jacob
committed
}
/////////////////////////////////////////////////////////////////////
// Create associated branches and associated private member DetectorPhysics address

GIRARD ALCINDOR Valérian
committed
void TExogamPhysics::InitializeRootOutput() {
TTree* outputTree = RootOutput::getInstance()->GetTree();
outputTree->Branch("Exogam", "TExogamPhysics", &m_EventPhysics);
// control histograms if needed

GIRARD ALCINDOR Valérian
committed
/*
TList* outputList = RootOutput::getInstance()->GetList();
controle = new TH1F("controle","histo de controle",20,0,20);
outputList->Add(controle);
*/
}
Hugo Jacob
committed
void TExogamPhysics::SetTreeReader(TTreeReader* TreeReader) {
TExogamPhysicsReader::r_SetTreeReader(TreeReader);
}
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/////////////////////////////// DoCalibration Part //////////////////////////:
void TExogamPhysics::InitializeRootHistogramsCalib() {
std::cout << "Initialize Exogam Histograms" << std::endl;
map<int, bool>::iterator it;
map<int, map<int,bool>>::iterator it2;
for (it = DoCalibrationE.begin(); it != DoCalibrationE.end(); it++) {
if (it->second) {
InitializeRootHistogramsE_F(it->first);
}
}
for (it = DoCalibrationEHG.begin(); it != DoCalibrationEHG.end(); it++) {
if (it->second) {
InitializeRootHistogramsEHG_F(it->first);
}
}
//for (it = DoCalibrationT.begin(); it != DoCalibrationT.end(); it++) {
// if (it->second) {
// InitializeRootHistogramsT_F(it->first);
// }
//}
for (it2 = DoCalibrationOuter.begin(); it2 != DoCalibrationOuter.end(); it2++) {
for (it = (it2->second).begin(); it != (it2->second).end(); it++) {
if (it->second) {
InitializeRootHistogramsOuter_F(it2->first,it->first);
}
}
}
}
void TExogamPhysics::FillHistogramsCalib() {
if (NPOptionManager::getInstance()->IsReader())
m_EventData = &(**r_ReaderEventData);
FillRootHistogramsCalib_F();
}
void TExogamPhysics::InitializeRootHistogramsE_F(unsigned int DetectorNumber) {
auto TH1Map = RootHistogramsCalib::getInstance()->GetTH1Map();
TString hnameEXOE = Form("EXO_E%d", DetectorNumber);
TString htitleEXOE = Form("EXO_E%d", DetectorNumber);
(*TH1Map)["Exogam"][hnameEXOE] = new TH1F(hnameEXOE, htitleEXOE, 65536, 0, 65536);
}
void TExogamPhysics::InitializeRootHistogramsOuter_F(unsigned int DetectorNumber, unsigned int OuterNumber) {
auto TH1Map = RootHistogramsCalib::getInstance()->GetTH1Map();
TString hnameEXOOuter = Form("EXO_Outer%d_%d", DetectorNumber, OuterNumber);
TString htitleEXOOuter = Form("EXO_Outer%d_%d", DetectorNumber, OuterNumber);
(*TH1Map)["Exogam"][hnameEXOOuter] = new TH1F(hnameEXOOuter, htitleEXOOuter, 65536, 0, 65536);
}
void TExogamPhysics::InitializeRootHistogramsEHG_F(unsigned int DetectorNumber) {
auto TH1Map = RootHistogramsCalib::getInstance()->GetTH1Map();
TString hnameEXOEHG = Form("EXO_EHG%d", DetectorNumber);
TString htitleEXOEHG = Form("EXO_EHG%d", DetectorNumber);
(*TH1Map)["Exogam"][hnameEXOEHG] = new TH1F(hnameEXOEHG, htitleEXOEHG, 65536, 0, 65536);
}
void TExogamPhysics::FillRootHistogramsCalib_F(){
auto TH1Map = RootHistogramsCalib::getInstance()->GetTH1Map();
TString hname;
for (UShort_t i = 0; i < m_EventData->GetExoMult(); i++) {
unsigned int DetectorNbr = m_EventData->GetExoCrystal(i);
if(DoCalibrationE[DetectorNbr] && m_EventData->GetExoE(i) >0){
hname = Form("EXO_E%d", DetectorNbr);
(*TH1Map)["Exogam"][hname]->Fill(m_EventData->GetExoE(i));
}
if(DoCalibrationEHG[DetectorNbr] && m_EventData->GetExoEHG(i) >0){
hname = Form("EXO_EHG%d", DetectorNbr);
(*TH1Map)["Exogam"][hname]->Fill(m_EventData->GetExoEHG(i));
}
if(DoCalibrationOuter[DetectorNbr][0] && m_EventData->GetExoOuter1(i) >0){
hname = Form("EXO_Outer%d_0", DetectorNbr);
(*TH1Map)["Exogam"][hname]->Fill(m_EventData->GetExoOuter1(i));
}
if(DoCalibrationOuter[DetectorNbr][1] && m_EventData->GetExoOuter2(i) >0){
hname = Form("EXO_Outer%d_1", DetectorNbr);
(*TH1Map)["Exogam"][hname]->Fill(m_EventData->GetExoOuter2(i));
}
if(DoCalibrationOuter[DetectorNbr][2] && m_EventData->GetExoOuter3(i) >0){
hname = Form("EXO_Outer%d_2", DetectorNbr);
(*TH1Map)["Exogam"][hname]->Fill(m_EventData->GetExoOuter3(i));
}
if(DoCalibrationOuter[DetectorNbr][3] && m_EventData->GetExoOuter4(i) >0){
hname = Form("EXO_Outer%d_3", DetectorNbr);
(*TH1Map)["Exogam"][hname]->Fill(m_EventData->GetExoOuter4(i));
}
}
}
void TExogamPhysics::DoCalibration() {
std::cout << "Do Calibration Exogam" << std::endl;
DefineCalibrationSource(Source_name);
map<int, bool>::iterator it;
map<int, map<int,bool>>::iterator it2;
std::string Path = NPOptionManager::getInstance()->GetCalibrationOutputPath();
std::string OutputName = NPOptionManager::getInstance()->GetOutputFile();
if (OutputName.size() > 5) {
if (OutputName.substr(OutputName.size() - 5, OutputName.size()) == ".root") {
OutputName = OutputName.substr(0, OutputName.size() - 5);
}
}
std::string make_folder = "mkdir " + Path + OutputName;
MakeInitialCalibFolder(make_folder);
ofstream* calib_file = new ofstream;
ofstream* dispersion_file = new ofstream;
if(!DoCalibrationE.empty()){
MakeECalibFolders(make_folder);
CreateCalibrationEFiles(calib_file, dispersion_file);
}
for (it = DoCalibrationE.begin(); it != DoCalibrationE.end(); it++) {
if (it->second) {
DoCalibrationE_F(it->first,"E", calib_file, dispersion_file, Threshold_E_Cal);
}
}
calib_file->close();
dispersion_file->close();
if(!DoCalibrationEHG.empty()){
MakeEHGCalibFolders(make_folder);
CreateCalibrationEHGFiles(calib_file, dispersion_file);
}
for (it = DoCalibrationEHG.begin(); it != DoCalibrationEHG.end(); it++) {
if (it->second) {
DoCalibrationE_F(it->first,"EHG", calib_file, dispersion_file, Threshold_EHG_Cal);
}
}
calib_file->close();
dispersion_file->close();
if(!DoCalibrationOuter.empty()){
MakeOuterCalibFolders(make_folder);
CreateCalibrationOuterFiles(calib_file, dispersion_file);
}
for (it2 = DoCalibrationOuter.begin(); it2 != DoCalibrationOuter.end(); it2++) {
for (it = (it2->second).begin(); it != (it2->second).end(); it++) {
if (it->second) {
DoCalibrationE_F(it->first,Form("Outer%d_",it2->first), calib_file, dispersion_file, Threshold_Outers_Cal);
}
}
}
calib_file->close();
dispersion_file->close();
}
void TExogamPhysics::MakeInitialCalibFolder(std::string make_folder) {
int sys = system(make_folder.c_str());
}
void TExogamPhysics::MakeECalibFolders(std::string make_folder) {
int sys =system((make_folder+"/Exogam_E").c_str());
}
void TExogamPhysics::MakeEHGCalibFolders(std::string make_folder) {
int sys =system((make_folder+"/Exogam_EHG").c_str());
}
void TExogamPhysics::MakeOuterCalibFolders(std::string make_folder) {
int sys =system((make_folder+"/Exogam_Outer").c_str());
}
void TExogamPhysics::DoCalibrationE_F(unsigned int DetectorNumber,std::string CalibType, ofstream* calib_file, ofstream* dispersion_file, unsigned int Threshold) {
auto TH1Map = RootHistogramsCalib::getInstance()->GetTH1Map();
auto TGraphMap = RootHistogramsCalib::getInstance()->GetTGraphMap();
#if CUBIX
CubixEnergyCal->Reset();
std::string hnameEXOE = Form("EXO_%s%d",CalibType.c_str(), DetectorNumber);
std::string htitleEXOE = Form("EXO_%s%d",CalibType.c_str(), DetectorNumber);
auto hist = ((*TH1Map)["Exogam"][hnameEXOE]);
CubixEnergyCal->SetDataFromHistTH1(hist,0);
for (auto ie : Source_E)
CubixEnergyCal->AddPeak(ie);
CubixEnergyCal->SetGain(1.);
CubixEnergyCal->SetVerbosityLevel(1);
CubixEnergyCal->SetFitPlynomialOrder(FitPolOrder);
CubixEnergyCal->SetNoOffset(false);
CubixEnergyCal->UseLeftTail(true);
CubixEnergyCal->UseRightTail(true);
CubixEnergyCal->UseFirstDerivativeSearch();
CubixEnergyCal->SetGlobalChannelLimits(hist->GetXaxis()->GetBinLowEdge(1)+Threshold,hist->GetXaxis()->GetBinLowEdge(hist->GetXaxis()->GetNbins())); // limit the search to this range in channels
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
CubixEnergyCal->SetGlobalPeaksLimits(15,5); // default fwhm and minmum amplitude for the peaksearch [15 5]
CubixEnergyCal->StartCalib();
vector < Fitted > FitResults = CubixEnergyCal->GetFitResults();
std:: cout << calib_file << " " << (*calib_file).is_open() << std::endl;
std:: cout << hnameEXOE << " ";
(*calib_file) << hnameEXOE << " ";
if(FitResults.size() > 1)
{
for(unsigned int i = 0; i <= FitPolOrder; i++){
(*calib_file) << scientific << setprecision(6) << setw(14) << CubixEnergyCal->fCalibFunction->GetParameter(i) << " ";
std::cout << scientific << setprecision(6) << setw(14) << CubixEnergyCal->fCalibFunction->GetParameter(i) << " ";
}
}
else
{
for(unsigned int i = 0; i <= FitPolOrder; i++){
(*calib_file) << scientific << setprecision(6) << setw(14) << 0. << " ";
std::cout << scientific << setprecision(6) << setw(14) << 0. << " ";
}
}
(*calib_file) << "\n";
std::cout << "\n";
if(FitResults.size()>1 && CubixEnergyCal->fCalibFunction) {
auto c = new TCanvas;
c->SetName("CalibrationResults");
c->SetTitle("Calibration Results");
c->Divide(1,2,0.0001,0.0001);
c->cd(1);
CubixEnergyCal->fCalibGraph->Draw("ap");
CubixEnergyCal->fCalibFunction->Draw("same");
c->cd(2);
CubixEnergyCal->fResidueGraph->Draw("ape");
c->Update();
c->Modified();
}
if(FitResults.size() > 1)
{
(*TGraphMap)["Exogam"][Form("Calib_Graph_%s",hnameEXOE.c_str())] = (TGraphErrors*)(CubixEnergyCal->fCalibGraph->Clone());
(*TGraphMap)["Exogam"][Form("Calib_Graph_%s",hnameEXOE.c_str())]->GetYaxis()->SetTitle("Energy (MeV)");
(*TGraphMap)["Exogam"][Form("Calib_Graph_%s",hnameEXOE.c_str())]->SetTitle(Form("Calibration_Graph_%s",hnameEXOE.c_str()));
(*TGraphMap)["Exogam"][Form("Residue_Graph_%s",hnameEXOE.c_str())] = (TGraphErrors*)(CubixEnergyCal->fResidueGraph->Clone());
(*TGraphMap)["Exogam"][Form("Residue_Graph_%s",hnameEXOE.c_str())]->GetXaxis()->SetTitle("Energy (MeV)");
(*TGraphMap)["Exogam"][Form("Residue_Graph_%s",hnameEXOE.c_str())]->GetYaxis()->SetTitle("Residue (MeV)");
(*TGraphMap)["Exogam"][Form("Residue_Graph_%s",hnameEXOE.c_str())]->SetTitle(Form("Residue_Graph_%s",hnameEXOE.c_str()));
}
#else
std::cout << "Exogam calibration currently not supported without CUBIX. Download CUBIX and set -DCUBIX=1 to use EXOGAM calibration\n";
exit(1);
#endif
}
void TExogamPhysics::DefineCalibrationSource(std::string source) {
// 239Pu
if(source == "60Co"){
Source_isotope.push_back("$^{60}$Co");
Source_E.push_back(1.17322);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(99.85);
Source_isotope.push_back("$^{60}$Co");
Source_E.push_back(1.33249);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(99.98);
}
else if(source == "152Eu"){
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(0.121782);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(28.58);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(0.344279);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(26.5);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(1.40801);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(21.0);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(0.964079);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(14.6);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(1.11207);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(13.64);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(0.778904);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(12.94);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(1.08587);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(10.21);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(0.244698);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(7.58);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(0.867378);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(4.25);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(0.443965);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(2.82);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(0.411116);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(2.23);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(1.08974);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(1.73);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(1.29914);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(1.62);
Source_isotope.push_back("$^{152}$Eu");
Source_E.push_back(1.21295);
Source_Sig.push_back(0.0001);
Source_branching_ratio.push_back(1.42);
}
else{
std::cout << "Please enter a valid source for gamma ray calibration\nCurrently supported sources are 60Co and 152Eu\n";
exit(1);
}
}
// FIXME Probably could be done better, currently a but inelegant
void TExogamPhysics::CreateCalibrationEFiles(ofstream* calib_file,
ofstream* dispersion_file) {
std::string Path = NPOptionManager::getInstance()->GetCalibrationOutputPath();
std::string OutputName = NPOptionManager::getInstance()->GetOutputFile();
if (OutputName.size() > 5) {
if (OutputName.substr(OutputName.size() - 5, OutputName.size()) == ".root") {
OutputName = OutputName.substr(0, OutputName.size() - 5);
}
}
TString Filename = "Cal_Exogam_E";
(*calib_file).open(((string)(Path + OutputName + "/Exogam_E/" + Filename + ".cal")).c_str());
(*dispersion_file).open(((string)(Path + OutputName + "/Exogam_E/" +Filename + ".dispersion")).c_str());
}
void TExogamPhysics::CreateCalibrationEHGFiles(ofstream* calib_file,
ofstream* dispersion_file) {
std::string Path = NPOptionManager::getInstance()->GetCalibrationOutputPath();
std::string OutputName = NPOptionManager::getInstance()->GetOutputFile();
if (OutputName.size() > 5) {
if (OutputName.substr(OutputName.size() - 5, OutputName.size()) == ".root") {
OutputName = OutputName.substr(0, OutputName.size() - 5);
}
}
TString Filename = "Cal_Exogam_EHG";
(*calib_file).open(((string)(Path + OutputName + "/Exogam_EHG/" + Filename + ".cal")).c_str());
(*dispersion_file).open(((string)(Path + OutputName + "/Exogam_EHG/" +Filename + ".dispersion")).c_str());
}
void TExogamPhysics::CreateCalibrationOuterFiles(ofstream* calib_file,
ofstream* dispersion_file) {
std::string Path = NPOptionManager::getInstance()->GetCalibrationOutputPath();
std::string OutputName = NPOptionManager::getInstance()->GetOutputFile();
if (OutputName.size() > 5) {
if (OutputName.substr(OutputName.size() - 5, OutputName.size()) == ".root") {
OutputName = OutputName.substr(0, OutputName.size() - 5);
}
}
TString Filename = "Cal_Exogam_Outer";
(*calib_file).open(((string)(Path + OutputName + "/Exogam_Outer/" + Filename + ".cal")).c_str());
(*dispersion_file).open(((string)(Path + OutputName + "/Exogam_Outer/" +Filename + ".dispersion")).c_str());
}
void TExogamPhysics::ReadDoCalibration(NPL::InputParser parser) {