Newer
Older
"""This script takes a graph of segments and computes the cost applied
to edges.
script. The cost is an internal property of the output graph. This
internal property is created if it was not already in the input
graph. The cost is overwritten if it was already in the input graph.
import graph_tool
import util_eddies
FACTOR = 2 * Omega * 1000 # 1000 for conversion of km to m
def avg_radii_rossby(latitude_list, speed_list, radius_list):
"""Compute average on some instantaneous eddies of Rossby number and
radius of maximum speed contour. The required properties for each
eddy are latitude, radius and speed. If the speed is not defined
for any eddy then the returned value of avg_Rossby is 0.
for latitude, speed, radius in zip(latitude_list, speed_list, radius_list):
if abs(speed) < 100:
avg_Rossby += speed / (FACTOR * math.sin(latitude) * radius)
def node_to_prop(node_list, e_overestim, SHPC, orientation):
instantaneous eddies. This function returns some properties of the
eddies, read from shapefiles: position of extremum, radius of
outermost contour or maximum speed contour, and speed. The
function returns a tuple of lists: one list for each property.
longitude_list = []
latitude_list = []
speed_list = []
radius_list = []
i_slice, ishape = SHPC.comp_ishape_n(n, e_overestim, orientation)
shapeRec = SHPC.get_reader(
i_slice, orientation, "extremum"
).shapeRecord(ishape)
longitude, latitude = [
math.radians(x) for x in shapeRec.shape.points[0]
]
longitude_list.append(longitude)
latitude_list.append(latitude)
speed_list.append(shapeRec.record.speed)
radius = (
SHPC.get_reader(i_slice, orientation, "max_speed_contour")
.record(ishape)
.r_eq_area
)
SHPC.get_reader(i_slice, orientation, "outermost_contour")
.record(ishape)
.r_eq_area
)
return longitude_list, latitude_list, speed_list, radius_list
def search_beg(inst_eddies, max_delta, avg_fix, e_overestim):
"""Return an index ip in inst_eddies. inst_eddies is a list of
inter-date indices of instantaneous eddies. len(inst_eddies) must
be >= 1. max_delta must be >= 0. If avg_fix then inst_eddies[:ip]
is a fixed number of instantaneous eddies, if the list is long
enought. If not avg_fix then ip = bisect.bisect_right(inst_eddies,
date(inst_eddies[0]) + max_delta, key = date), although the
computation is not implemented that way.
"""
ip = min(max_delta + 1, len(inst_eddies))
if not avg_fix and ip >= 2:
d_max = (
util_eddies.node_to_date_eddy(
inst_eddies[0], e_overestim, only_date=True
)
+ max_delta
)
# assertion: date(inst_eddies[0]) <= d_max
# assertion: date(elem) > d_max for elem in inst_eddies[ip:]
while (
ip >= 2
and util_eddies.node_to_date_eddy(
inst_eddies[ip - 1], e_overestim, only_date=True
)
> d_max
):
ip -= 1
# assertion: date(elem) <= d_max for elem in inst_eddies[:ip]
# and date(elem) > d_max for elem in inst_eddies[ip:]
return ip
def search_end(inst_eddies, max_delta, avg_fix, e_overestim):
"""Return an index ip in inst_eddies. inst_eddies is a list of
inter-date indices of instantaneous eddies. len(inst_eddies) must
be >= 1. max_delta must be >= 0. If avg_fix then inst_eddies[ip:]
contains a fixed number of instantaneous eddies, if the list is
long enough. If not avg_fix then ip =
bisect.bisect_left(inst_eddies, date(inst_eddies[-1]) - max_delta,
key = date), although the computation is not implemented that way.
i_max = len(inst_eddies) - 1
ip = max(i_max - max_delta, 0)
d_min = (
util_eddies.node_to_date_eddy(
inst_eddies[-1], e_overestim, only_date=True
)
- max_delta
)
# assertion: date(inst_eddies[i_max]) >= d_min
# assertion: date(elem) < d_min for elem in inst_eddies[:ip]
and util_eddies.node_to_date_eddy(
inst_eddies[ip], e_overestim, only_date=True
)
< d_min
):
ip += 1
# assertion: date(elem) < d_min for elem in inst_eddies[:ip] and
# date(elem) >= d_min for elem in inst_eddies[ip:]
# assertion: max(len(inst_eddies) - max_delta - 1, 0) <= ip <=
# len(inst_eddies) - 1
timings = open("timings_cost.txt", "w")
parser.add_argument("SHPC_dir")
parser.add_argument("orientation", choices=["Anticyclones", "Cyclones"])
parser.add_argument(
"input_segments",
help="input graph of segments without cost, suffix .gt (graph-tool) or "
".graphml",
help="output graph of segments with cost, suffix .gt (graph-tool) or "
".graphml",
)
parser.add_argument(
"--debug", help="save properties to output file", action="store_true"
)
parser.add_argument(
"--avg_fix",
help="average over a fixed number of instantaneous eddies",
action="store_true",
)
delta_r_mean = -9.4709e-3 # in km
delta_r_std = 8.6953 # in km
g = graph_tool.load_graph(
args.input_segments,
ignore_vp=[
"pos_first",
"pos_last",
"first_av_rad",
"first_av_ros",
"last_av_rad",
"last_av_ros",
],
ignore_ep=["cost_function"],
)
print("Input graph:")
print("Number of vertices:", g.num_vertices())
print("Number of edges:", g.num_edges())
print("Internal properties:")
g.list_properties()
# It is useful to save the orientation to the output graph of this
# script for further processing of the output graph by other scripts:
g.graph_properties["orientation"] = g.new_graph_property("string")
g.graph_properties["orientation"] = args.orientation
pos_first = g.new_vp("vector<double>")
pos_last = g.new_vp("vector<double>")
first_av_rad = g.new_vp("float")
first_av_ros = g.new_vp("float")
last_av_rad = g.new_vp("float")
last_av_ros = g.new_vp("float")
longitude_prop = g.new_vp("vector<double>")
latitude_prop = g.new_vp("vector<double>")
speed_prop = g.new_vp("vector<double>")
radius_prop = g.new_vp("vector<double>")
g.vp["pos_first"] = pos_first
g.vp["pos_last"] = pos_last
g.vp["first_av_rad"] = first_av_rad
g.vp["first_av_ros"] = first_av_ros
g.vp["last_av_rad"] = last_av_rad
g.vp["last_av_ros"] = last_av_ros
g.ep["cost_function"] = g.new_ep("float")
SHPC = util_eddies.SHPC_class(args.SHPC_dir)
max_delta = 6
# maximum distance in number of eddies, over which we average, must be >= 0
(
longitude_prop[n],
latitude_prop[n],
speed_prop[n],
radius_prop[n],
) = node_to_prop(
g.vp.inst_eddies[n], g.gp.e_overestim, SHPC, args.orientation
)
if n.in_degree() != 0:
# Define properties for beginning of the segment:
ip_beg = search_beg(
g.vp.inst_eddies[n], max_delta, args.avg_fix, g.gp.e_overestim
)
first_av_rad[n], first_av_ros[n] = avg_radii_rossby(
latitude_prop[n][:ip_beg],
speed_prop[n][:ip_beg],
radius_prop[n][:ip_beg],
)
pos_first[n] = [longitude_prop[n][0], latitude_prop[n][0]] # in rad
if n.out_degree() != 0:
# Define properties for end of the segment:
if ip_beg < len(g.vp.inst_eddies[n]):
# We have to read more from the shapefiles and redefine
# properties.
ip_end = search_end(
g.vp.inst_eddies[n], max_delta, args.avg_fix, g.gp.e_overestim
)
last_av_rad[n], last_av_ros[n] = avg_radii_rossby(
latitude_prop[n][ip_end:],
speed_prop[n][ip_end:],
radius_prop[n][ip_end:],
)
# assertion: ip_beg == len(g.vp.inst_eddies[n])
# assertion: len(g.vp.inst_eddies[n]) <= max_delta + 1
# The number of eddies in the segment is lower than or
# equal to the number of days over which to average. The
# values for the end of the segment will be the same as
# for the begining, except for the position.
last_av_rad[n] = first_av_rad[n]
last_av_ros[n] = first_av_ros[n]
pos_last[n] = [longitude_prop[n][-1], latitude_prop[n][-1]] # in rad
for edge in g.edges():
source_node = edge.source()
target_node = edge.target()
latitude = (pos_last[source_node][1] + pos_first[target_node][1]) / 2
lon_diff = abs(pos_last[source_node][0] - pos_first[target_node][0])
if lon_diff > math.radians(300):
lon_diff = 2 * math.pi - lon_diff
Delta_Cent = r_Earth * math.sqrt(
(lon_diff * math.cos(latitude)) ** 2
+ (pos_last[source_node][1] - pos_first[target_node][1]) ** 2
if first_av_ros[target_node] != 0 and last_av_ros[source_node] != 0:
Delta_Ro = first_av_ros[target_node] - last_av_ros[source_node]
# R_Vmax 1 and 2 already exist, just get the delta
Delta_R_Vmax = first_av_rad[target_node] - last_av_rad[source_node]
g.ep.cost_function[edge] = math.sqrt(
((Delta_Cent - delta_cent_mean) / delta_cent_std) ** 2
+ ((Delta_Ro - delta_ro_mean) / delta_ro_std) ** 2
+ ((Delta_R_Vmax - delta_r_mean) / delta_r_std) ** 2
)