Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
SARAH SARAH
  • Project overview
    • Project overview
    • Details
    • Activity
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Activity
Collapse sidebar
  • GOODSELL Mark
  • SARAHSARAH
  • Wiki
  • Already_defined_Operators_in_FlavorKit

Last edited by Martin Gabelmann Jun 28, 2019
Page history

Already_defined_Operators_in_FlavorKit

Already defined Operators in FlavorKit

Lagrangian

In this section we present our notation and conventions for the operators (and their corresponding Wilson coefficients) implemented in PreSARAH. Although a more complete list of flavor violating operators can be built, we will concentrate on those implemented in PreSARAH. If necessary, the user can extend it by adding his/her own operators.

The interaction Lagrangian relevant for flavor violating processes can be written as

{\mathcal L}_{\text{FV}} = {\mathcal L}_{\text{LFV}} + {\mathcal L}_{\text{QFV}} \, .

The first piece contains the operators that can trigger lepton flavor violation whereas the second piece contains the operators responsible for quark flavor violation.

The general Lagrangian relevant for lepton flavor violation can be written as

{\mathcal L}_{\text{LFV}} = {\mathcal L}_{\ell \ell \gamma} + {\mathcal L}_{\ell \ell Z} + {\mathcal L}_{\ell \ell h} + {\mathcal L}_{4 \ell} + {\mathcal L}_{2 \ell 2q} \, .

The first term contains theℓ − ℓ − γ interaction, given by

{\mathcal L}_{\ell \ell \gamma} = e \, \bar \ell_\beta \left[ \gamma^\mu \left(K_1^L P_L + K_1^R P_R \right) + i m_{\ell_\alpha} \sigma^{\mu \nu} q_\nu \left(K_2^L P_L + K_2^R P_R \right) \right] \ell_\alpha A_\mu + h.c.

Heree is the electric charge,q the photon momentum,$P_{L,R} = \frac{1}{2} (1 \mp \gamma_5)$ are the usual chirality projectors andℓα, β denote the lepton flavors. For practical reasons, we will always consider the photonic contributions independently, and we will not include them in other vector operators. On the contrary, theZ- and Higgs boson contributions will be included whenever possible. Therefore, theℓ − ℓ − Z andℓ − ℓ − h interaction Lagrangians will only be used for observables involving realZ- and Higgs bosons. These two Lagrangians can be written as

{\mathcal L}_{\ell \ell Z} = \bar \ell_\beta \left[ \gamma^\mu \left(R_1^L P_L + R_1^R P_R \right) + p^\mu \left(R_2^L P_L + R_2^R P_R \right) \right] \ell_\alpha Z_\mu \, ,

wherep is theℓβ 4-momentum, and

{\mathcal L}_{\ell \ell h} = \bar \ell_\beta \left(S_L P_L + S_R P_R \right) \ell_\alpha h \, .

The general4ℓ 4-fermion interaction Lagrangian can be written as

{\mathcal L}_{4 \ell} = \sum_{\substack{I=S,V,T\\X,Y=L,R}} A_{XY}^I \bar \ell_\beta \Gamma_I P_X \ell_\alpha \bar \ell_\delta \Gamma_I P_Y \ell_\gamma + h.c. \, ,

whereℓα, β, γ, δ denote the lepton flavors andΓS = 1,ΓV = γμ andΓT = σμ**ν. We omit flavor indices in the Wilson coefficients for the sake of clarity. This Lagrangian contains the most general form compatible with Lorentz invariance. The Wilson coefficientsAL**RS andAR**LS were included in , but absent in . As previously stated, the coefficients in Eq. do not include photonic contributions, but they include Z-boson and scalar ones. Finally, the general2ℓ2q four fermion interaction Lagrangian at the quark level is given by

{\mathcal L}_{2 \ell 2q} = {\mathcal L}_{2 \ell 2d} + {\mathcal L}_{2 \ell 2u}

where

{\mathcal L}_{2 \ell 2d} = \sum_{\substack{I=S,V,T\\X,Y=L,R}} B_{XY}^I \bar \ell_\beta \Gamma_I P_X \ell_\alpha \bar d_\gamma \Gamma_I P_Y d_\gamma + h.c. \\ {\mathcal L}_{2 \ell 2u} = \left. {\mathcal L}_{2 \ell 2d} \right|_{d \to u, \, B \to C} \, .

Heredγ denotes the d-quark flavor.

Let us now consider the Lagrangian relevant for quark flavor violation. This can be written as

{\mathcal L}_{\text{QFV}} = {\mathcal L}_{q q \gamma} + {\mathcal L}_{q q g} + {\mathcal L}_{4 d} + {\mathcal L}_{2d2l} + {\mathcal L}_{2d2\nu} + {\mathcal L}_{du\ell\nu} + {\mathcal L}_{d d H} \, .

The first two terms correspond to operators that couple quark bilinears to massless gauge bosons. These are

{\mathcal L}_{q q \gamma} = e \left[ \bar d_\beta \sigma_{\mu \nu} \left( m_{d_\beta} Q_1^L P_L + m_{d_\alpha} Q_1^R P_R \right) d_\alpha \right] F^{\mu \nu} \\ {\mathcal L}_{q q g} = g_s \left[ \bar d_\beta \sigma_{\mu \nu} \left( m_{d_\beta} Q_2^L P_L + m_{d_\alpha} Q_2^R P_R \right) T^a d_\alpha \right] G_a^{\mu \nu} \, .

HereTa areS**U(3) matrices. The Wilson coefficientsQ1, 2L, R can be easily related to the usualC7, 8(′) coefficients, sometimes normalized with an additional\frac{1}{16 \pi^2} factor. The4d four fermion interaction Lagrangian can be written as

{\mathcal L}_{4 d} = \sum_{\substack{I=S,V,T\\X,Y=L,R}} D_{XY}^I \bar d_\beta \Gamma_I P_X d_\alpha \bar d_\delta \Gamma_I P_Y d_\gamma + h.c. \, ,

wheredα, β, γ, δ denote the lepton flavors. Again, we omit flavor indices in the Wilson coefficients for the sake of clarity. The2d2ℓ four fermion interaction Lagrangian is given by

{\mathcal L}_{2d 2 \ell} = \sum_{\substack{I=S,V,T\\X,Y=L,R}} E_{XY}^I \bar d_\beta \Gamma_I P_X d_\alpha \bar \ell_\gamma \, \Gamma_I P_Y \ell_\gamma + hc \, .

Hereℓγ denotes the lepton flavor.{\mathcal L}_{2d 2 \ell} should not be confused with{\mathcal L}_{2 \ell 2d}. In the former case one has QFV operators, whereas in the latter one has LFV operators. This distinction has been made for practical reasons. The2d2ν andd**uℓν terms of the QFV Lagrangian are

{\mathcal L}_{2d 2 \nu} = \sum_{X,Y=L,R} F_{XY}^V \bar d_\beta \gamma_\mu P_X d_\alpha \bar \nu_\gamma \gamma^\mu P_Y \nu_\gamma + hc \\ {\mathcal L}_{du\ell\nu} = \sum_{\substack{I=S,V\\X,Y=L,R}} G_{XY}^I \bar d_\beta \Gamma_I P_X u_\alpha \bar \ell_\gamma \, \Gamma_I P_Y \nu_\gamma + hc \, .

Note that we have not introduced scalar or tensor2d2ν operators, nor tensord**uℓν ones, and that lepton flavor (denoted by the indexγ) is conserved in these operators. Finally, we have also included a term in the Lagrangian accounting for operators of the type(d̄Γd)S and(d̄Γd)P, whereS (P) is a virtual [1] scalar (pseudoscalar) state. This piece can be written as

{\mathcal L}_{d d H} = \bar d_\beta \left(H_L^S P_L + H_R^S P_R \right) d_\alpha S + \bar d_\beta \left(H_L^P P_L + H_R^P P_R \right) d_\alpha P \, .

Operators available by default in the SPheno output of SARAH

The operators presented abvoe have been implemented by using the results of PreSARAH in SARAH. Those are exported to SPheno. In the following a list of all internal names for these operators, which can be used in the calculation of new flavor observables is given.

2-Fermion-1-Boson operators

These operators are arrays with either two or three elements. While operators involving vector bosons have always dimension3 × 3, those with scalars have dimension3 × 3 × ng.ng is the number of generations of the considered scalar and forng = 1 the last index is dropped.

(d̄βσμ**νΓ**dα)Fμ**ν and(d̄βσμ**νΓ**dα)Gμ**ν

Variable Operator Name
CC7 e**mdβ(d̄βσμ**νPLdα)Fμ**ν Q1L
CC7p e**mdα(d̄βσμ**νPRdα)Fμ**ν Q1R
CC8 gsmdβ(d̄βσμ**νPLdα)Gμ**ν Q2L
CC8p gsmdα(d̄βσμ**νPRdα)Gμ**ν Q2R

These operators are derived by PreSARAH with the following input files

NameProcess="Gamma2Q";

ConsideredProcess = "2Fermion1Vector";
FermionOrderExternal={1,2};
NeglectMasses={3};


ExternalFields= {bar[BottomQuark], BottomQuark,Photon};
CombinationGenerations = {{3,2}};


AllOperators={
   {OA2qSL,Op[7] Pair[ec[3],k[1]]},
   {OA2qSR,Op[6] Pair[ec[3],k[1]]},
   {OA2qVL,Op[7,ec[3]]},
   {OA2qVR,Op[6,ec[3]]}
};

OutputFile = "Gamma2Q.m";

Filters = {};

NameProcess="Gluon2Q";

ConsideredProcess = "2Fermion1Vector";
FermionOrderExternal={1,2};
NeglectMasses={3};


ExternalFields= {bar[BottomQuark], BottomQuark,Gluon};
CombinationGenerations = {{3,2}};


AllOperators={
   {OG2qSL,Op[7] Pair[ec[3],k[1]]},
   {OG2qSR,Op[6] Pair[ec[3],k[1]]}
};

OutputFile = "Gluon2Q.m";

Filters = {};

The normalization is changed to match the standard definitions by

ProcessWrapper = True;
NameProcess = "Gamma2Q"
ExternalFields = {bar[BottomQuark], BottomQuark, Photon};

SumContributionsOperators["Gamma2Q"] = {
{CC7, OA2qSL},
{CC7p, OA2qSR}
};

NormalizationOperators["Gamma2Q"] ={
"CC7(2,:) = 0.25_dp*CC7(2,:)/sqrt(Alpha_160*4*Pi)/MFd(2)",
"CC7(3,:) = 0.25_dp*CC7(3,:)/sqrt(Alpha_160*4*Pi)/MFd(3)",
"CC7p(2,:) = 0.25_dp*CC7p(2,:)/sqrt(Alpha_160*4*Pi)/MFd(2)",
"CC7p(3,:) = 0.25_dp*CC7p(3,:)/sqrt(Alpha_160*4*Pi)/MFd(3)",

"CC7SM(2,:) = 0.25_dp*CC7SM(2,:)/sqrt(Alpha_160*4*Pi)/MFd(2)",
"CC7SM(3,:) = 0.25_dp*CC7SM(3,:)/sqrt(Alpha_160*4*Pi)/MFd(3)",
"CC7pSM(2,:) = 0.25_dp*CC7pSM(2,:)/sqrt(Alpha_160*4*Pi)/MFd(2)",
"CC7pSM(3,:) = 0.25_dp*CC7pSM(3,:)/sqrt(Alpha_160*4*Pi)/MFd(3)"
};

ProcessWrapper = True;
NameProcess = "Gluon2Q"
ExternalFields = {bar[BottomQuark], BottomQuark, Gluon};

SumContributionsOperators["Gluon2Q"] = {
{CC8, OG2qSL},
{CC8p, OG2qSR}};

NormalizationOperators["Gluon2Q"] ={
"CC8(2,:) = 0.25_dp*CC8(2,:)/sqrt(AlphaS_160*4*Pi)/MFd(2)",
"CC8(3,:) = 0.25_dp*CC8(3,:)/sqrt(AlphaS_160*4*Pi)/MFd(3)",
"CC8p(2,:) = 0.25_dp*CC8p(2,:)/sqrt(AlphaS_160*4*Pi)/MFd(2)",
"CC8p(3,:) = 0.25_dp*CC8p(3,:)/sqrt(AlphaS_160*4*Pi)/MFd(3)",

"CC8SM(2,:) = 0.25_dp*CC8SM(2,:)/sqrt(AlphaS_160*4*Pi)/MFd(2)",
"CC8SM(3,:) = 0.25_dp*CC8SM(3,:)/sqrt(AlphaS_160*4*Pi)/MFd(3)",
"CC8pSM(2,:) = 0.25_dp*CC8pSM(2,:)/sqrt(AlphaS_160*4*Pi)/MFd(2)",
"CC8pSM(3,:) = 0.25_dp*CC8pSM(3,:)/sqrt(AlphaS_160*4*Pi)/MFd(3)"

};

\bar \ell_\beta \left( q^2 \gamma^\mu + i m_{\ell_\alpha} \sigma^{\mu \nu} q_\nu \right) \ell_\alpha A_\mu

Variable Operator Name
K2L e m_{\ell_\alpha} (\bar \ell_\beta \sigma_{\mu\nu} P_L \ell_\alpha) q^{\nu} A^\mu K2L
K1L q^2 (\bar \ell_\beta \gamma_\mu P_L \ell_\alpha) A^\mu K1L
K2R e m_{\ell_\alpha} (\bar \ell_\beta \sigma_{\mu\nu} P_R \ell_\alpha) q^{\nu} A^\mu K2L
K1R q^2 (\bar \ell_\beta \gamma_\nu P_R \ell_\alpha) A^\mu K1R

These operators are derived by PreSARAH with the following input files

NameProcess="Gamma2l";

ConsideredProcess = "2Fermion1Vector";
FermionOrderExternal={1,2};
NeglectMasses={3};


ExternalFields= {bar[ChargedLepton], ChargedLepton,Photon};
CombinationGenerations = {{2,1},{3,1},{3,2}};


AllOperators={
   {OA2lSL,Op[6] Pair[ec[3],k[1]]},
   {OA2lSR,Op[7] Pair[ec[3],k[1]]},
   {OA1L,Op[6,ec[3]] Pair[k[3],k[3]]},
   {OA1R,Op[7,ec[3]] Pair[k[3],k[3]]}
};

OutputFile = "Gamma2l.m";

Filters = {};

The normalization is changed to match the standard definitions by

ProcessWrapper = True;
NameProcess = "Gamma2l"
ExternalFields = {bar[ChargedLepton], ChargedLepton, Photon};

SumContributionsOperators["Gamma2l"] = {
{K1L, OA1L},
{K1R, OA1R},
{K2L, OA2lSL},
{K2R, OA2lSR}};

NormalizationOperators["Gamma2l"] ={
"K1L = K1L/sqrt(Alpha_MZ*4*Pi)",
"K1R = K1R/sqrt(Alpha_MZ*4*Pi)",
"K2L(2,:) = -0.5_dp*K2L(2,:)/sqrt(Alpha_MZ*4*Pi)/MFe(2)",
"K2L(3,:) = -0.5_dp*K2L(3,:)/sqrt(Alpha_MZ*4*Pi)/MFe(3)",
"K2R(2,:) = -0.5_dp*K2R(2,:)/sqrt(Alpha_MZ*4*Pi)/MFe(2)",
"K2R(3,:) = -0.5_dp*K2R(3,:)/sqrt(Alpha_MZ*4*Pi)/MFe(3)"
};

(\bar \ell \Gamma \ell) Z

Variable Operator Name
OZ2lVL (\bar{\ell} \, \gamma^\mu P_L \ell) Z_\mu R1L
OZ2lSL (\bar{\ell} p^\mu P_L \ell) Z_\mu R2L
OZ2lVR (\bar{\ell} \, \gamma^\mu P_R \ell) Z_\mu R1R
OZ2lSR (\bar{\ell} p^\mu P_R \ell) Z_\mu R2R

In the following we omit flavor indices for the sake of simplicity. These operators are derived by PreSARAH with the following input files

NameProcess="Z2l";

ConsideredProcess = "2Fermion1Vector";
FermionOrderExternal={1,2};
NeglectMasses={1,2};


ExternalFields= {ChargedLepton,bar[ChargedLepton],Zboson};
CombinationGenerations = {{1,2},{1,3},{2,3}};


AllOperators={
   {OZ2lSL,Op[7] Pair[ec[3],k[1]]}, {OZ2lSR,Op[6] Pair[ec[3],k[1]]},
   {OZ2lVL,Op[7,ec[3]]}, {OZ2lVR,Op[6,ec[3]]}
};

OutputFile = "Z2l.m";

Filters = {};

(\bar{\ell} \Gamma \ell) h

Variable Operator Name
OH2lSL \bar{\ell} P_L \ell \, h SL
OH2lSR \bar{\ell} P_R \ell \, h SR

These operators are derived by PreSARAH with the following input files

NameProcess="H2l";

ConsideredProcess = "2Fermion1Scalar";
FermionOrderExternal={1,2};
NeglectMasses={1,2};


ExternalFields= {ChargedLepton,bar[ChargedLepton],HiggsBoson};
CombinationGenerations = {{1,2,ALL},{1,3,ALL},{2,3,ALL}};


AllOperators={{OH2lSL,Op[7]},
              {OH2lSR,Op[6]}
};

OutputFile = "H2l.m";

Filters = {};

(d̄Γd)S and(d̄Γd)P

Variable Operator Name
OH2qSL d̄**PLd S H_L^S
OH2qSR d̄**PRd S HRS
OAh2qSL d̄**PLd P H_L^P
OAh2qSR d̄**PRd P HRP

These auxiliary [2] operators are derived by PreSARAH with the following input files

NameProcess="H2q";

(* operators needed for double penguins with internal scalars *)
(* we neglect therefore the mass of the scalar in the loop functions *)
(* and treat it as massless *)

ConsideredProcess = "2Fermion1Scalar";
FermionOrderExternal={2,1};
NeglectMasses={3};


ExternalFields= {DownQuark,bar[DownQuark],HiggsBoson};
CombinationGenerations = {{2,1,ALL},{3,1,ALL},{3,2,ALL}};


AllOperators={{OH2qSL,Op[7]},
              {OH2qSR,Op[6]}
};

OutputFile = "H2q.m";

Filters = {};

NameProcess="A2q";

(* operators needed for double penguins with internal scalars *)
(* we neglect therefore the mass of the scalar in the loop functions *)
(* and treat it as massless *)

ConsideredProcess = "2Fermion1Scalar";
FermionOrderExternal={2,1};
NeglectMasses={3};


ExternalFields= {DownQuark,bar[DownQuark],PseudoScalar};
CombinationGenerations = {{2,1,ALL},{3,1,ALL},{3,2,ALL}};


AllOperators={{OAh2qSL,Op[7]},
              {OAh2qSR,Op[6]}
};

OutputFile = "A2q.m";

Filters = {};

4-Fermion operators

All operators listed below carry four indices and have dimension3 × 3 × 3 × 3. In addition, the user can access the different contributions of all operators from tree-level diagrams, as well as penguin and box diagrams. The name conventions are as follows: for each operator op the additional parameter exist

  • TSop : tree-level contributions with scalar propagator
  • TVop : tree-level contributions with scalar propagator
  • PSop : sum of penguin and self-energy contributions with scalar propagator
  • PVop : sum of penguin and self-energy contributions with scalar propagator
  • Bop : box contributions.

We will denote the 4-fermion operators involving two leptons and two down-type quarks depending on whether they lead to LFV or to QFV processes ℓℓd**d for LFV andd**dℓℓ for QFV.

(\bar{d} \Gamma d) (\bar{\ell} \Gamma^\prime \ell) and(d̄Γd)(ν̄**Γ′ν)

Variable Operator Name
OddllSLL (\bar{d} P_L d) (\bar{\ell} P_L \ell) EL**LS
OddllSRR (\bar{d} P_R d) (\bar{\ell} P_R \ell) ER**RS
OddllSLR (\bar{d} P_L d) (\bar{\ell} P_R \ell) EL**RS
OddllSRL (\bar{d} P_R d) (\bar{\ell} P_L \ell) ER**LS
OddllVLL (\bar{d} \gamma_\mu P_L d) (\bar{\ell} \gamma^\mu P_L \ell) EL**LV
OddvvVLL (d̄**γμPLd)(ν̄**γμPRν) FL**LV
OddllVRR (\bar{d} \gamma_\mu P_R d) (\bar{\ell} \gamma^\mu P_R \ell) ER**RV
OddvvVRR (d̄**γμPRd)(ν̄**γμPRν) FR**RV
OddllVLR (\bar{d} \gamma_\mu P_L d) (\bar{\ell} \gamma^\mu P_R \ell) EL**RV
OddvvVLR (d̄**γμPLd)(ν̄**γμPRν) FL**RV
OddllVRL (\bar{d} \gamma_\mu P_R d) (\bar{\ell} \gamma^\mu P_L \ell) ER**LV
OddvvVRL (d̄**γμPRd)(ν̄**γμPLν) FR**LV
OddllTLL (\bar{d} \sigma_{\mu\nu} P_L d) (\bar{\ell} \sigma^{\mu\nu} P_L \ell) EL**LT
OddllTRR (\bar{d} \sigma_{\mu\nu} P_R d) (\bar{\ell} \sigma^{\mu\nu} P_R \ell) ER**RT
OddllTLR (\bar{d} \sigma_{\mu\nu} P_L d) (\bar{\ell} \sigma^{\mu\nu} P_R \ell) EL**RT
OddllTRL (\bar{d} \sigma_{\mu\nu} P_R d) (\bar{\ell} \sigma^{\mu\nu} P_L \ell) ER**LT

These operators are derived by PreSARAH with the following input files

NameProcess="2d2L";

ConsideredProcess = "4Fermion";
FermionOrderExternal={2,1,4,3};
NeglectMasses={1,2,3,4};


ExternalFields= {DownQuark,bar[DownQuark],ChargedLepton,bar[ChargedLepton]};

CombinationGenerations = {{3,1,1,1}, {3,1,2,2}, {3,1,3,3},
                          {3,2,1,1}, {3,2,2,2}, {3,2,3,3}};


AllOperators={{OddllSLL,Op[7].Op[7]},
              {OddllSRR,Op[6].Op[6]},
              {OddllSRL,Op[6].Op[7]},
              {OddllSLR,Op[7].Op[6]},

              {OddllVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
              {OddllVLL,Op[6,Lor[1]].Op[6,Lor[1]]},
              {OddllVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
              {OddllVLR,Op[6,Lor[1]].Op[7,Lor[1]]},

              {OddllTLL,Op[-7,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {OddllTLR,Op[-7,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]},
              {OddllTRL,Op[-6,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {OddllTRR,Op[-6,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]}
};

NameProcess="2d2nu";

ConsideredProcess = "4Fermion";
FermionOrderExternal={2,1,4,3};
NeglectMasses={1,2,3,4};

ExternalFields= {DownQuark,bar[DownQuark],Neutrino,bar[Neutrino]};

CombinationGenerations = Flatten[Table[{{2,1, neutrino1, neutrino2},
      {3,1, neutrino1, neutrino2},{3,2, neutrino1, neutrino2}},
      {neutrino1,1,3},{neutrino2,1,3}],2];


AllOperators={{OddvvVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
              {OddvvVLL,Op[6,Lor[1]].Op[6,Lor[1]]},
              {OddvvVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
              {OddvvVLR,Op[6,Lor[1]].Op[7,Lor[1]]}
};

(\bar{\ell} \Gamma \ell) (\bar{d} \Gamma^\prime d) and(\bar{\ell} \Gamma \ell) (\bar{u} \Gamma^\prime u)

Variable Operator Name
OllddSLL (\bar{\ell} P_L \ell) (\bar{d} P_L d) BL**LS
OlluuSLL (\bar{\ell} P_L \ell) (\bar{u} P_L u) CL**LS
OllddSRR (\bar{\ell} P_R \ell) (\bar{d} P_R d) BR**RS
OlluuSRR (\bar{\ell} P_R \ell) (\bar{u} P_R u) CR**RS
OllddSRL (\bar{\ell} P_R \ell) (\bar{d} P_L d) BR**LS
OlluuSRL (\bar{\ell} P_R \ell) (\bar{u} P_L u) CR**LS
OllddSLR (\bar{\ell} P_L \ell) (\bar{d} P_R d) BL**RS
OlluuSLR (\bar{\ell} P_L \ell) (\bar{u} P_R u) CL**RS
OllddVLL (\bar{\ell} \gamma_\mu P_L \ell) (\bar{d} \gamma^\mu P_L d) BL**LV
OlluuVLL (\bar{\ell} \gamma_\mu P_L \ell) (\bar{u} \gamma^\mu P_L u) CL**LV
OllddVRR (\bar{\ell} \gamma_\mu P_R \ell) (\bar{d} \gamma^\mu P_R d) BR**RV
OlluuVRR (\bar{\ell} \gamma_\mu P_R \ell) (\bar{u} \gamma^\mu P_R u) CR**RV
OllddVLR (\bar{\ell} \gamma_\mu P_L \ell) (\bar{d} \gamma^\mu P_R d) BL**RV
OlluuVLR (\bar{\ell} \gamma_\mu P_L \ell) (\bar{u} \gamma^\mu P_R u) CL**RV
OllddVRL (\bar{\ell} \gamma_\mu P_R \ell) (\bar{d} \gamma^\mu P_L d) BR**LV
OlluuVRL (\bar{\ell} \gamma_\mu P_R \ell) (\bar{u} \gamma^\mu P_L u) CR**LV
OllddTLL (\bar{\ell} \sigma_{\mu\nu} P_L \ell) (\bar{d} \sigma^{\mu\nu} P_L d) BL**LT
OlluuTLL (\bar{\ell} \sigma_{\mu\nu} P_L \ell) (\bar{u} \sigma^{\mu\nu} P_L u) CL**LT
OllddTRR (\bar{\ell} \sigma_{\mu\nu} P_R \ell) (\bar{d} \sigma^{\mu\nu} P_R d) BR**RT
OlluuTRR (\bar{\ell} \sigma_{\mu\nu} P_R \ell) (\bar{u} \sigma^{\mu\nu} P_R u) CR**RT
OllddTLR (\bar{\ell} \sigma_{\mu\nu} P_L \ell) (\bar{d} \sigma^{\mu\nu} P_R d) BL**RT
OlluuTLR (\bar{\ell} \sigma_{\mu\nu} P_L \ell) (\bar{u} \sigma^{\mu\nu} P_R u) CL**RT
OllddTRL (\bar{\ell} \sigma_{\mu\nu} P_R \ell) (\bar{d} \sigma^{\mu\nu} P_L d) BR**LT
OlluuTRL (\bar{\ell} \sigma_{\mu\nu} P_R \ell) (\bar{u} \sigma^{\mu\nu} P_L u) CR**LT
NameProcess="2L2d";

ConsideredProcess = "4Fermion";
FermionOrderExternal={2,1,4,3};
NeglectMasses={1,2,3,4};


ExternalFields= {ChargedLepton,bar[ChargedLepton],DownQuark,bar[DownQuark]};
CombinationGenerations = {{2,1,1,1}, {3,1,1,1}, {3,2,1,1},
                          {2,1,2,2}, {3,1,2,2}, {3,2,2,2}};


AllOperators={{OllddSLL,Op[7].Op[7]},
              {OllddSRR,Op[6].Op[6]},
              {OllddSRL,Op[6].Op[7]},
              {OllddSLR,Op[7].Op[6]},

              {OllddVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
              {OllddVLL,Op[6,Lor[1]].Op[6,Lor[1]]},
              {OllddVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
              {OllddVLR,Op[6,Lor[1]].Op[7,Lor[1]]},

              {OllddTLL,Op[-7,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {OllddTLR,Op[-7,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]},
              {OllddTRL,Op[-6,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {OllddTRR,Op[-6,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]}
};

NameProcess="2L2u";

ConsideredProcess = "4Fermion";
FermionOrderExternal={2,1,4,3};
NeglectMasses={1,2,3,4};


ExternalFields= {ChargedLepton,bar[ChargedLepton],UpQuark,bar[UpQuark]};
CombinationGenerations = {{2,1,1,1},{3,1,1,1},{3,2,1,1}};



AllOperators={{OlluuSLL,Op[7].Op[7]},
              {OlluuSRR,Op[6].Op[6]},
              {OlluuSRL,Op[6].Op[7]},
              {OlluuSLR,Op[7].Op[6]},

              {OlluuVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
              {OlluuVLL,Op[6,Lor[1]].Op[6,Lor[1]]},
              {OlluuVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
              {OlluuVLR,Op[6,Lor[1]].Op[7,Lor[1]]},

              {OlluuTLL,Op[-7,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {OlluuTLR,Op[-7,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]},
              {OlluuTRL,Op[-6,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {OlluuTRR,Op[-6,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]}
};

(d̄Γd)(d̄**Γ′d) and(\bar{\ell} \Gamma \ell) (\bar{\ell} \Gamma^\prime \ell)

Variable Operator Name
O4dSLL (d̄**PLd)(d̄**PLd) DL**LS
O4lSLL (\bar{\ell} P_L \ell) (\bar{\ell} P_L \ell) AL**LS
O4dSRR (d̄**PRd)(d̄**PRd) DR**RS
O4lSRR (\bar{\ell} P_R \ell) (\bar{\ell} P_R \ell) AR**RS
O4dSLR (d̄**PLd)(d̄**PRd) DL**RS
O4lSLR (\bar{\ell} P_L \ell) (\bar{\ell} P_R \ell) AL**RS
O4dSRL (d̄**PRd)(d̄**PLd) DR**LS
O4lSRL (\bar{\ell} P_R \ell) (\bar{\ell} P_L \ell) AR**LS
O4dVLL (d̄**γμPLd)(d̄**γμPLd) DL**LV
O4lVLL (\bar{\ell} \gamma_\mu P_L \ell) (\bar{\ell} \gamma^\mu P_L \ell) AL**LV
O4dVRR (d̄**γμPRd)(d̄**γμPRd) DR**RV
O4lVRR (\bar{\ell} \gamma_\mu P_R \ell) (\bar{\ell} \gamma^\mu P_R \ell) AR**RV
O4dVLR (d̄**γμPLd)(d̄**γμPRd) DL**RV
O4lVLR (\bar{\ell} \gamma_\mu P_L \ell) (\bar{\ell} \gamma^\mu P_R \ell) AL**RV
O4dVRL (d̄**γμPRd)(d̄**γμPLd) DR**LV
O4lVRL (\bar{\ell} \gamma_\mu P_R \ell) (\bar{\ell} \gamma^\mu P_L \ell) AR**LV
O4dTLL (d̄**σμ**νPLd)(d̄**σμ**νPLd) DL**LT
O4lTLL (\bar{\ell} \sigma_{\mu\nu} P_L \ell) (\bar{\ell} \sigma^{\mu\nu} P_L \ell) AL**LT
O4dTRR (d̄**σμ**νPRd)(d̄**σμ**νPRd) DR**RT
O4lTRR (\bar{\ell} \sigma_{\mu\nu} P_R \ell) (\bar{\ell} \sigma^{\mu\nu} P_R \ell) AR**RT
O4dTLR (d̄**σμ**νPLd)(d̄**σμ**νPRd) DL**RT
O4lTLR (\bar{\ell} \sigma_{\mu\nu} P_L \ell) (\bar{\ell} \sigma^{\mu\nu} P_R \ell) AL**RT
O4dTRL (d̄**σμ**νPRd)(d̄**σμ**νPLd) DR**LT
O4lTRL (\bar{\ell} \sigma_{\mu\nu} P_R \ell) (\bar{\ell} \sigma^{\mu\nu} P_L \ell) AR**LT
NameProcess="4d";

ConsideredProcess = "4Fermion";
FermionOrderExternal={2,1,4,3};
NeglectMasses={1,2,3,4};


ExternalFields= {DownQuark,bar[DownQuark],DownQuark,bar[DownQuark]};

ColorFlow = ColorDelta[1,2] ColorDelta[3,4];

CombinationGenerations = {{3,1,3,1},{3,2,3,2},{2,1,2,1}};


AllOperators={{O4dSLL,Op[7].Op[7]},
              {O4dSRR,Op[6].Op[6]},
              {O4dSRL,Op[6].Op[7]},
              {O4dSLR,Op[7].Op[6]},

              {O4dVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
              {O4dVLL,Op[6,Lor[1]].Op[6,Lor[1]]},
              {O4dVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
              {O4dVLR,Op[6,Lor[1]].Op[7,Lor[1]]},

              {O4dTLL,Op[-7,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {O4dTLR,Op[-7,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]},
              {O4dTRL,Op[-6,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {O4dTRR,Op[-6,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]}
};

Filters = {NoPenguins};

NameProcess="4L";

ConsideredProcess = "4Fermion";
FermionOrderExternal={2,1,4,3};
NeglectMasses={1,2,3,4};

ExternalFields= {ChargedLepton,bar[ChargedLepton],ChargedLepton,bar[ChargedLepton]};
CombinationGenerations = {{2,1,1,1},{3,1,1,1},{3,2,2,2}};


AllOperators={{O4lSLL,Op[7].Op[7]},
              {O4lSRR,Op[6].Op[6]},
              {O4lSRL,Op[6].Op[7]},
              {O4lSLR,Op[7].Op[6]},

              {O4lVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
              {O4lVLL,Op[6,Lor[1]].Op[6,Lor[1]]},
              {O4lVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
              {O4lVLR,Op[6,Lor[1]].Op[7,Lor[1]]},

              {O4lTLL,Op[-7,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {O4lTLR,Op[-7,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]},
              {O4lTRL,Op[-6,Lor[1],Lor[2]].Op[-7,Lor[1],Lor[2]]},
              {O4lTRR,Op[-6,Lor[1],Lor[2]].Op[-6,Lor[1],Lor[2]]}
};

Filters = {NoCrossedDiagrams};

(\bar{d} \Gamma u) (\bar{\ell} \Gamma^\prime \nu)

Variable Operator Name
OdulvVLL (\bar{d} \gamma_\mu P_L u) (\bar{\ell} \gamma^\mu P_L \nu) GL**LV
OdulvSLL (\bar{d} P_L u) (\bar{\ell} P_L \nu) GL**LS
OdulvVRR (\bar{d} \gamma_\mu P_R u) (\bar{\ell} \gamma^\mu P_R \nu) GR**RV
OdulvSRR (\bar{d} P_R u) (\bar{\ell} P_R \nu) GR**RS
OdulvVLR (\bar{d} \gamma_\mu P_L u) (\bar{\ell} \gamma^\mu P_R \nu) GL**RV
OdulvSLR (\bar{d} P_L u) (\bar{\ell} P_R \nu) GL**RS
OdulvVRL (\bar{d} \gamma_\mu P_R u) (\bar{\ell} \gamma^\mu P_L \nu) GR**LV
OdulvSRL (\bar{d} P_R u) (\bar{\ell} P_L \nu) GR**LS
NameProcess="dulv";

ConsideredProcess = "4Fermion";
FermionOrderExternal={2,1,3,4};
NeglectMasses={1,2,3,4};


ExternalFields= {DownQuark,bar[UpQuark], Neutrino, bar[ChargedLepton]};

CombinationGenerations =
  Flatten[Table[{{3,1,i,j},{3,2,i,j},{2,2,i,j},{2,1,i,j}},{i,1,3},{j,1,3}],2];

Clear[i,j];


AllOperators={{OdulvSLL,Op[7].Op[7]},
              {OdulvSRR,Op[6].Op[6]},
              {OdulvSRL,Op[6].Op[7]},
              {OdulvSLR,Op[7].Op[6]},

              {OdulvVRR,Op[7,Lor[1]].Op[7,Lor[1]]},
              {OdulvVLL,Op[6,Lor[1]].Op[6,Lor[1]]},
              {OdulvVRL,Op[7,Lor[1]].Op[6,Lor[1]]},
              {OdulvVLR,Op[6,Lor[1]].Op[7,Lor[1]]}
};

Filters = {NoBoxes, NoPenguins};

See also

[1] We would like to emphasize that our implementation of these operators is only valid for virtual scalars and pseudoscalars. They have been introduced in order to provide the 1-loop vertices necessary for the computation of the double penguin contributions toΔ**MBq. Therefore, they are not valid for observables in which the scalar or pseudoscalar states are real particles.

[2] The(d̄Γd)S and(d̄Γd)P operators have been introduced to compute double penguin corrections toΔ**MBq, whereS andP appear as intermediate (virtual) particles. They should not be used in processes where the scalar or pseudoscalar states are real particles because the loop functions are calculated with vanishing external momenta.

Clone repository

Home

Index

  • Additional terms in Lagrangian
  • Advanced usage of FlavorKit
  • Advanced usage of FlavorKit to calculate new Wilson coefficients
  • Advanced usage of FlavorKit to define new observables
  • Already defined Operators in FlavorKit
  • Already defined observables in FlavorKit
  • Auto-generated templates for particles.m and parameters.m
  • Automatic index contraction
  • Basic definitions for a non-supersymmetric model
  • Basic definitions for a supersymmetric model
  • Basic usage of FlavorKit
  • Boundary conditions in SPheno
  • CalcHep CompHep
  • Calculation of flavour and precision observables with SPheno
  • Checking the particles and parameters within Mathematica
  • Checks of implemented models
  • Conventions
  • Decay calculation with SPheno
  • Defined FlavorKit parameters
  • Definition of the properties of different eigenstates
  • Delete Particles
  • Different sets of eigenstates
  • Diphoton and digluon vertices with SPheno
  • Dirac Spinors
  • FeynArts
  • Fine-Tuning calculations with SPheno
  • Flags for SPheno Output
  • Flags in SPheno LesHouches file
  • FlavorKit
  • FlavorKit Download and Installation
  • Flavour Decomposition
  • GUT scale condition in SPheno
  • Gauge Symmetries SUSY
  • Gauge Symmetries non-SUSY
  • Gauge fixing
  • Gauge group constants
  • General information about Field Properties
  • General information about model implementations
  • Generating files with particle properties
  • Generic RGE calculation
  • Global Symmetries SUSY
  • Global Symmetries non-SUSY
  • Handling of Tadpoles with SPheno
  • Handling of non-fundamental representations
  • HiggsBounds
  • Higher dimensionsal terms in superpotential
  • Input parameters of SPheno
  • Installation
  • Installing Vevacious
  • LHCP
  • LHPC
  • LaTeX
  • Lagrangian
  • Loop Masses
  • Loop calculations
  • Loop functions
  • Low or High scale SPheno version
  • Main Commands
  • Main Model File
  • Matching to the SM in SPheno
  • MicrOmegas
  • ModelOutput
  • Model files for Monte-Carlo tools
  • Model files for other tools
  • Models with Thresholds in SPheno
  • Models with another gauge group at the SUSY scale
  • Models with several generations of Higgs doublets
  • More precise mass spectrum calculation
  • No SPheno output possible
  • Nomenclature for fields in non-supersymmetric models
  • Nomenclature for fields in supersymmetric models
  • One-Loop Self-Energies and Tadpoles
  • One-Loop Threshold Corrections in Scalar Sectors
  • Options SUSY Models
  • Options non-SUSY Models
  • Parameters.m
  • Particle Content SUSY
  • Particle Content non-SUSY
  • Particles.m
  • Phases
  • Potential
  • Presence of super-heavy particles
  • RGE Running with Mathematica
  • RGEs
  • Renormalisation procedure of SPheno
  • Rotations angles in SPheno
  • Rotations in gauge sector
  • Rotations in matter sector
  • SARAH in a Nutshell
  • SARAH wiki
  • SLHA input for Vevacious
  • SPheno
  • SPheno Higgs production
  • SPheno Output
  • SPheno and Monte-Carlo tools
  • SPheno files
  • SPheno mass calculation
  • SPheno threshold corrections
  • Setting up SPheno.m
  • Setting up Vevacious
  • Setting up the SPheno properties
  • Special fields and parameters in SARAH
  • Superpotential
  • Support of Dirac Gauginos
  • Supported Models
  • Supported gauge sectors
  • Supported global symmetries
  • Supported matter sector
  • Supported options for symmetry breaking
  • Supported particle mixing
  • Tadpole Equations
  • The renormalisation scale in SPheno
  • Tree-level calculations
  • Tree Masses
  • Two-Loop Self-Energies and Tadpoles
  • UFO
  • Usage of tadpoles equations
  • Using SPheno for two-loop masses
  • Using auxiliary parameters in SPheno
  • VEVs
  • Vertices
  • Vevacious
  • WHIZARD