Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
SARAH SARAH
  • Project overview
    • Project overview
    • Details
    • Activity
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Activity
Collapse sidebar
  • GOODSELL Mark
  • SARAHSARAH
  • Wiki
  • Vevacious

Last edited by Martin Gabelmann Jun 28, 2019
Page history

Vevacious

Vevacious

Vevacious  provides the possibility to check the one-loop effective potential of a given model and parameter point for the global minimum. In these checks the possibility of dangerous vacuum expectation values (VEVs) of charged or colored scalars can be taken into account and the life-time of meta-stable vacua can be calculated using Cosmotransitions . For details about the input for of Vevacious we refer the interested reader to Ref. .

MakeVevacious[Options];

The possible options are:

  • ComplexParameters, Value: list of parameters, Default: {}: By default, all parameters are assumed to be real when writing the Vevacious input files. However, the user can define those parameters which should be treated as complex.
  • IgnoreParameters, Value: list of parameters, Default: {}: The user can define a list of parameters which should be set to zero when writing the Vevacious input.
  • OutputFile, Value: String, Default MyModel.vin, where MyModel here is the same name as is given in Start[“MyModel”]; above: The name used for the output file.
  • Scheme, Value: DR or MS, Default: DR for SUSY models, MS for non-SUSY models: Defines if as renormalization scheme $\overline{\text{DR}}'$ or $\overline{\text{MS}}$ should be used.

The first two options allow to treat parameters differently in the Vevacious output as defined in the SARAH model file.

Example: MSSM with stau VEVs

In general, three changes are always necessary to include stau VEVs in a model.

  1. Defining the particles which can get a VEV DEFINITION[EWSB][VEVs]= {{SHd0, {vdR, 1/Sqrt[2]}, {sigmad, I/Sqrt[2]},{phid,1/Sqrt[2]}}, {SHu0, {vuR, 1/Sqrt[2]}, {sigmau, I/Sqrt[2]},{phiu,1/Sqrt[2]}}, {SeL, {vLR[3], 1/Sqrt[2]}, {vLI[3], I/Sqrt[2]}, {sigmaL, I/Sqrt[2]},{phiL,1/Sqrt[2]}}, {SeR, {vER[3], 1/Sqrt[2]}, {vEI[3], I/Sqrt[2]}, {sigmaR, I/Sqrt[2]},{phiR,1/Sqrt[2]}}, {SHdm, {0, 0}, {sigmaM, I/Sqrt[2]},{phiM,1/Sqrt[2]}}, {SHup, {0, 0}, {sigmaP, I/Sqrt[2]},{phiP,1/Sqrt[2]}}, {SvL, {0, 0}, {sigmaV, I/Sqrt[2]},{phiV,1/Sqrt[2]}} };

    where it is important that the VEVs have names that are at least two characters long.

  2. Changing the rotation of the vector bosons: DEFINITION[EWSB][GaugeSector] = { {{VB,VWB[1],VWB[2],VWB[3]},{VB1,VB2,VB3,VB4},ZZ}, {{fWB[1],fWB[2],fWB[3]},{fWm,fWp,fW0},ZfW} };

  3. Changing the rotation of matter fields: DEFINITION[EWSB][MatterSector]= { ... {{phid, phiu,phiM,phiP,phiV,phiL,phiR}, {hh, ZH}}, {{sigmad, sigmau,sigmaM,sigmaP,sigmaV,sigmaL,sigmaR}, {Ah, ZA}}, {{fB, fW0, FHd0, FHu0, FvL, FeL, conj[FeR],fWm, FHdm, fWp, FHup}, {L0, ZN}}, ... };

More information about Vevacious

  • There are some subtleties in preparing a consistent input for Vevacious.
  • Installing Vevacious
  • Setting up and running Vevacious
  • The Vevacious output
  • The Vevacious model file format

See also

Clone repository

Home

Index

  • Additional terms in Lagrangian
  • Advanced usage of FlavorKit
  • Advanced usage of FlavorKit to calculate new Wilson coefficients
  • Advanced usage of FlavorKit to define new observables
  • Already defined Operators in FlavorKit
  • Already defined observables in FlavorKit
  • Auto-generated templates for particles.m and parameters.m
  • Automatic index contraction
  • Basic definitions for a non-supersymmetric model
  • Basic definitions for a supersymmetric model
  • Basic usage of FlavorKit
  • Boundary conditions in SPheno
  • CalcHep CompHep
  • Calculation of flavour and precision observables with SPheno
  • Checking the particles and parameters within Mathematica
  • Checks of implemented models
  • Conventions
  • Decay calculation with SPheno
  • Defined FlavorKit parameters
  • Definition of the properties of different eigenstates
  • Delete Particles
  • Different sets of eigenstates
  • Diphoton and digluon vertices with SPheno
  • Dirac Spinors
  • FeynArts
  • Fine-Tuning calculations with SPheno
  • Flags for SPheno Output
  • Flags in SPheno LesHouches file
  • FlavorKit
  • FlavorKit Download and Installation
  • Flavour Decomposition
  • GUT scale condition in SPheno
  • Gauge Symmetries SUSY
  • Gauge Symmetries non-SUSY
  • Gauge fixing
  • Gauge group constants
  • General information about Field Properties
  • General information about model implementations
  • Generating files with particle properties
  • Generic RGE calculation
  • Global Symmetries SUSY
  • Global Symmetries non-SUSY
  • Handling of Tadpoles with SPheno
  • Handling of non-fundamental representations
  • HiggsBounds
  • Higher dimensionsal terms in superpotential
  • Input parameters of SPheno
  • Installation
  • Installing Vevacious
  • LHCP
  • LHPC
  • LaTeX
  • Lagrangian
  • Loop Masses
  • Loop calculations
  • Loop functions
  • Low or High scale SPheno version
  • Main Commands
  • Main Model File
  • Matching to the SM in SPheno
  • MicrOmegas
  • ModelOutput
  • Model files for Monte-Carlo tools
  • Model files for other tools
  • Models with Thresholds in SPheno
  • Models with another gauge group at the SUSY scale
  • Models with several generations of Higgs doublets
  • More precise mass spectrum calculation
  • No SPheno output possible
  • Nomenclature for fields in non-supersymmetric models
  • Nomenclature for fields in supersymmetric models
  • One-Loop Self-Energies and Tadpoles
  • One-Loop Threshold Corrections in Scalar Sectors
  • Options SUSY Models
  • Options non-SUSY Models
  • Parameters.m
  • Particle Content SUSY
  • Particle Content non-SUSY
  • Particles.m
  • Phases
  • Potential
  • Presence of super-heavy particles
  • RGE Running with Mathematica
  • RGEs
  • Renormalisation procedure of SPheno
  • Rotations angles in SPheno
  • Rotations in gauge sector
  • Rotations in matter sector
  • SARAH in a Nutshell
  • SARAH wiki
  • SLHA input for Vevacious
  • SPheno
  • SPheno Higgs production
  • SPheno Output
  • SPheno and Monte-Carlo tools
  • SPheno files
  • SPheno mass calculation
  • SPheno threshold corrections
  • Setting up SPheno.m
  • Setting up Vevacious
  • Setting up the SPheno properties
  • Special fields and parameters in SARAH
  • Superpotential
  • Support of Dirac Gauginos
  • Supported Models
  • Supported gauge sectors
  • Supported global symmetries
  • Supported matter sector
  • Supported options for symmetry breaking
  • Supported particle mixing
  • Tadpole Equations
  • The renormalisation scale in SPheno
  • Tree-level calculations
  • Tree Masses
  • Two-Loop Self-Energies and Tadpoles
  • UFO
  • Usage of tadpoles equations
  • Using SPheno for two-loop masses
  • Using auxiliary parameters in SPheno
  • VEVs
  • Vertices
  • Vevacious
  • WHIZARD