Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
SARAH SARAH
  • Project overview
    • Project overview
    • Details
    • Activity
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Activity
Collapse sidebar
  • GOODSELL Mark
  • SARAHSARAH
  • Wiki
  • Tadpole_Equations

Last edited by Martin Gabelmann Jun 28, 2019
Page history

Tadpole_Equations

Tadpole Equations

During the evaluation of a model, SARAH calculates ’on the fly’ all minimum conditions of the tree-level potential, the so called tadpole equations. In the case of no CP violation, in which complex scalars are decomposed as

S_i \to \frac{1}{\sqrt{2}}(v_i + \phi_i + i \sigma_i) \,,

the expressions

0 = \frac{\partial V}{\partial \phi_i} \equiv T_i

are calculated. These are equivalent to \frac{\partial V}{\partial v_i}. For models with CP violation in the Higgs sector, i.e. where either complex phases appear between the real scalars or where the VEVs have an imaginary part, SARAH calculates the minimum conditions with respect to the CP-even and CP-odd components:

0 = \frac{\partial V}{\partial \phi_i} \equiv T_{\phi_i} \,,\hspace{1cm} 0 = \frac{\partial V}{\partial \sigma_i} \equiv T_{\sigma_i}

The set of all tadpole equations is in this case Ti = {Tϕi, Tσi}.

Getting the tadpole equations from SARAH

All tadpole equations for given eigenstates are returned by

TadpoleEquations[$EIGENSTATES]

The order of the tadpole equations in this array corresponds to the order of the definition of VEVs in the model file, see VEVs. There is also the shorter command

 TadpoleEquation[X]

to obtain the tadpole equations corresponding to a specific VEV or state.

Example

The tadpole equation for vd after EWSB is saved in

TadpoleEquations[EWSB][[/1|1]]

and reads

mHd2*vd + (g1^2*vd^3)/8 + (g2^2*vd^3)/8 - (g1^2*vd*vu^2)/8 -
  (g2^2*vd*vu^2)/8 + vd*\[Mu]^2 - vu*B[\[Mu]]

The same result can be obtained by

 TadpoleEquation[vd]

or

 TadpoleEquation[phid]

How to use these equations is explained in some more detail here.

Output

The tadpole equations are exported into LaTeX format as well as in Fortrancode used by SPheno. This ensures that all parameter points evaluated by SPheno are at least sitting at a local minimum of the scalar potential. Moreover, the tadpole equations are included in the model files for Vevacious which is used to find all possible solutions of them with respect to the different VEVs.

See also

  • Usage of tadpoles equations
Clone repository

Home

Index

  • Additional terms in Lagrangian
  • Advanced usage of FlavorKit
  • Advanced usage of FlavorKit to calculate new Wilson coefficients
  • Advanced usage of FlavorKit to define new observables
  • Already defined Operators in FlavorKit
  • Already defined observables in FlavorKit
  • Auto-generated templates for particles.m and parameters.m
  • Automatic index contraction
  • Basic definitions for a non-supersymmetric model
  • Basic definitions for a supersymmetric model
  • Basic usage of FlavorKit
  • Boundary conditions in SPheno
  • CalcHep CompHep
  • Calculation of flavour and precision observables with SPheno
  • Checking the particles and parameters within Mathematica
  • Checks of implemented models
  • Conventions
  • Decay calculation with SPheno
  • Defined FlavorKit parameters
  • Definition of the properties of different eigenstates
  • Delete Particles
  • Different sets of eigenstates
  • Diphoton and digluon vertices with SPheno
  • Dirac Spinors
  • FeynArts
  • Fine-Tuning calculations with SPheno
  • Flags for SPheno Output
  • Flags in SPheno LesHouches file
  • FlavorKit
  • FlavorKit Download and Installation
  • Flavour Decomposition
  • GUT scale condition in SPheno
  • Gauge Symmetries SUSY
  • Gauge Symmetries non-SUSY
  • Gauge fixing
  • Gauge group constants
  • General information about Field Properties
  • General information about model implementations
  • Generating files with particle properties
  • Generic RGE calculation
  • Global Symmetries SUSY
  • Global Symmetries non-SUSY
  • Handling of Tadpoles with SPheno
  • Handling of non-fundamental representations
  • HiggsBounds
  • Higher dimensionsal terms in superpotential
  • Input parameters of SPheno
  • Installation
  • Installing Vevacious
  • LHCP
  • LHPC
  • LaTeX
  • Lagrangian
  • Loop Masses
  • Loop calculations
  • Loop functions
  • Low or High scale SPheno version
  • Main Commands
  • Main Model File
  • Matching to the SM in SPheno
  • MicrOmegas
  • ModelOutput
  • Model files for Monte-Carlo tools
  • Model files for other tools
  • Models with Thresholds in SPheno
  • Models with another gauge group at the SUSY scale
  • Models with several generations of Higgs doublets
  • More precise mass spectrum calculation
  • No SPheno output possible
  • Nomenclature for fields in non-supersymmetric models
  • Nomenclature for fields in supersymmetric models
  • One-Loop Self-Energies and Tadpoles
  • One-Loop Threshold Corrections in Scalar Sectors
  • Options SUSY Models
  • Options non-SUSY Models
  • Parameters.m
  • Particle Content SUSY
  • Particle Content non-SUSY
  • Particles.m
  • Phases
  • Potential
  • Presence of super-heavy particles
  • RGE Running with Mathematica
  • RGEs
  • Renormalisation procedure of SPheno
  • Rotations angles in SPheno
  • Rotations in gauge sector
  • Rotations in matter sector
  • SARAH in a Nutshell
  • SARAH wiki
  • SLHA input for Vevacious
  • SPheno
  • SPheno Higgs production
  • SPheno Output
  • SPheno and Monte-Carlo tools
  • SPheno files
  • SPheno mass calculation
  • SPheno threshold corrections
  • Setting up SPheno.m
  • Setting up Vevacious
  • Setting up the SPheno properties
  • Special fields and parameters in SARAH
  • Superpotential
  • Support of Dirac Gauginos
  • Supported Models
  • Supported gauge sectors
  • Supported global symmetries
  • Supported matter sector
  • Supported options for symmetry breaking
  • Supported particle mixing
  • Tadpole Equations
  • The renormalisation scale in SPheno
  • Tree-level calculations
  • Tree Masses
  • Two-Loop Self-Energies and Tadpoles
  • UFO
  • Usage of tadpoles equations
  • Using SPheno for two-loop masses
  • Using auxiliary parameters in SPheno
  • VEVs
  • Vertices
  • Vevacious
  • WHIZARD