Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
SARAH SARAH
  • Project overview
    • Project overview
    • Details
    • Activity
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Activity
Collapse sidebar
  • GOODSELL Mark
  • SARAHSARAH
  • Wiki
  • VEVs

Last edited by Martin Gabelmann Jun 28, 2019
Page history

VEVs

VEVs

The particles responsible for breaking a gauge symmetry receive a VEV. After the symmetry breaking, these particles are parametrized by a scalar ϕ and a pseudo scalar σ part and the VEV v:

S = \frac{1}{\sqrt{2}} \left( \phi_S + i \sigma_S + v_S \right)

Implementation in SARAH 

This is in SARAH done by

DEFINITION[$EIGENSTATES][VEVs] =
{Particle Name, {{VEV, Coefficient 1},
      {Pseudoscalar, Coefficient 2},{Scalar, Coefficient 3},({Phase})};
  1. Name: The name of the particle receiving a VEV
  2. VEV: Name of the VEV
  3. Scalar: Name of the scalar component
  4. Pseudoscalar: Name of the pseudo scalar component
  5. Coefficient 1,2,3: The different (numerical) coefficients.
  6. Phase: Optional phase

All indices carried by the particle receiving the VEV are automatically added to the scalar and pseudo scalar part. The scalar, pseudo scalar and the VEV are handled as real parameters in SARAH . The phase is only an optional argument and can be skipped for Higgs sectors without CP violation.

Example

In the MSSM, the HiggsHd0 andHu0 get VEVsvd andvu:

H_u^0 = \frac{1}{\sqrt{2}} \left(v_u + i \sigma_u +\phi_u \right) \, , \hspace{1cm} H_d^0 = \frac{1}{\sqrt{2}} \left(v_d + i \sigma_d +\phi_d \right)

This is done in SARAH by using

DEFINITION[EWSB][VEVs]=
{{SHd0, {vd, 1/Sqrt[2]}, {sigmad, I/Sqrt[2]},{phid,1/Sqrt[2]}},
 {SHu0, {vu, 1/Sqrt[2]}, {sigmau, I/Sqrt[2]},{phiu,1/Sqrt[2]}},
};

To add a relative phase, use

DEFINITION[EWSB][VEVs]=
{{SHd0, {vd, 1/Sqrt[2]}, {sigmad, I/Sqrt[2]},{phid,1/Sqrt[2]}},
 {SHu0, {vu, 1/Sqrt[2]}, {sigmau, I/Sqrt[2]},{phiu,1/Sqrt[2]},{eta}},
};

This is interpreted as

H_u^0 = \frac{e^{i \eta}}{\sqrt{2}} \left(v_u + i \sigma_u +\phi_u \right) \, , \hspace{1cm} H_d^0 = \frac{1}{\sqrt{2}} \left(v_d + i \sigma_d +\phi_d \right)

Aligned VEVs

The standard definition of a model with broken electric charge due to VEVs charged slepton VEVs looks like

DEFINITION[EWSB][VEVs]=
  {...
   {SeL, {vL, 1/Sqrt[2]}, {sigmaL,I/Sqrt[2]},{phiL,1/Sqrt[2]}},
   {SeR, {vR, 1/Sqrt[2]}, {sigmaR,I/Sqrt[2]},{phiR,1/Sqrt[2]}},
  };

With this definition, all three generations of left and right sleptons would get a VEV. However, usually one is only interested in the case that staus receive VEVs. This can now be defined by

DEFINITION[EWSB][VEVs]=
  {..,
   {SeL, {vL[3], 1/Sqrt[2]}, {sigmaL,I/Sqrt[2]},{phiL,1/Sqrt[2]}},
   {SeR, {vR[3], 1/Sqrt[2]}, {sigmaR,I/Sqrt[2]},{phiR,1/Sqrt[2]}}};

If one wants to consider smuon and stau VEVs, vL[2,3], vR[2,3] can be used.

Complex VEVs

To define complex VEVs, it is possible to give the phase as last argument:

DEFINITION[EWSB][VEVs]=
  {{SHd0, {vd, 1/Sqrt[2]}, {sigmad,I/Sqrt[2]},{phid,1/Sqrt[2]}},
   {SHu0, {vu, 1/Sqrt[2]}, {sigmau,I/Sqrt[2]},{phiu,1/Sqrt[2]},{eta}}};

This is understood as H_u^0 \to \frac{\exp(i \eta)}{\sqrt{2}} \left(v_u + i \sigma_u + \phi_u\right). Another possibility to define complex VEVs is to define

DEFINITION[EWSB][VEVs]=
 {{SHd0, {vdR, 1/Sqrt[2]}, {vdI, I/Sqrt[2]},
                      {sigmad,I/Sqrt[2]},{phid,1/Sqrt[2]}},
  {SHu0, {vuR, 1/Sqrt[2]}, {vuI, I/Sqrt[2]},
                      {sigmau,I/Sqrt[2]},{phiu,1/Sqrt[2]}}
   };

which is understood as

H_d^0 \to \frac{1}{\sqrt{2}}\left(v_d^R + i v_d^I + i \sigma_d + \phi_d \right)\,,\hspace{1cm} H_u^0 \to \frac{1}{\sqrt{2}}\left(v_u^R + i v_u^I + i \sigma_u + \phi_u \right) \, .

This format has the advantage that the tree-level tadpole equations are also in the complex case are purely polynomials and can be used numerically with dedicated codes like HOM4PS2 which is used by Vevacious .

See also

Clone repository

Home

Index

  • Additional terms in Lagrangian
  • Advanced usage of FlavorKit
  • Advanced usage of FlavorKit to calculate new Wilson coefficients
  • Advanced usage of FlavorKit to define new observables
  • Already defined Operators in FlavorKit
  • Already defined observables in FlavorKit
  • Auto-generated templates for particles.m and parameters.m
  • Automatic index contraction
  • Basic definitions for a non-supersymmetric model
  • Basic definitions for a supersymmetric model
  • Basic usage of FlavorKit
  • Boundary conditions in SPheno
  • CalcHep CompHep
  • Calculation of flavour and precision observables with SPheno
  • Checking the particles and parameters within Mathematica
  • Checks of implemented models
  • Conventions
  • Decay calculation with SPheno
  • Defined FlavorKit parameters
  • Definition of the properties of different eigenstates
  • Delete Particles
  • Different sets of eigenstates
  • Diphoton and digluon vertices with SPheno
  • Dirac Spinors
  • FeynArts
  • Fine-Tuning calculations with SPheno
  • Flags for SPheno Output
  • Flags in SPheno LesHouches file
  • FlavorKit
  • FlavorKit Download and Installation
  • Flavour Decomposition
  • GUT scale condition in SPheno
  • Gauge Symmetries SUSY
  • Gauge Symmetries non-SUSY
  • Gauge fixing
  • Gauge group constants
  • General information about Field Properties
  • General information about model implementations
  • Generating files with particle properties
  • Generic RGE calculation
  • Global Symmetries SUSY
  • Global Symmetries non-SUSY
  • Handling of Tadpoles with SPheno
  • Handling of non-fundamental representations
  • HiggsBounds
  • Higher dimensionsal terms in superpotential
  • Input parameters of SPheno
  • Installation
  • Installing Vevacious
  • LHCP
  • LHPC
  • LaTeX
  • Lagrangian
  • Loop Masses
  • Loop calculations
  • Loop functions
  • Low or High scale SPheno version
  • Main Commands
  • Main Model File
  • Matching to the SM in SPheno
  • MicrOmegas
  • ModelOutput
  • Model files for Monte-Carlo tools
  • Model files for other tools
  • Models with Thresholds in SPheno
  • Models with another gauge group at the SUSY scale
  • Models with several generations of Higgs doublets
  • More precise mass spectrum calculation
  • No SPheno output possible
  • Nomenclature for fields in non-supersymmetric models
  • Nomenclature for fields in supersymmetric models
  • One-Loop Self-Energies and Tadpoles
  • One-Loop Threshold Corrections in Scalar Sectors
  • Options SUSY Models
  • Options non-SUSY Models
  • Parameters.m
  • Particle Content SUSY
  • Particle Content non-SUSY
  • Particles.m
  • Phases
  • Potential
  • Presence of super-heavy particles
  • RGE Running with Mathematica
  • RGEs
  • Renormalisation procedure of SPheno
  • Rotations angles in SPheno
  • Rotations in gauge sector
  • Rotations in matter sector
  • SARAH in a Nutshell
  • SARAH wiki
  • SLHA input for Vevacious
  • SPheno
  • SPheno Higgs production
  • SPheno Output
  • SPheno and Monte-Carlo tools
  • SPheno files
  • SPheno mass calculation
  • SPheno threshold corrections
  • Setting up SPheno.m
  • Setting up Vevacious
  • Setting up the SPheno properties
  • Special fields and parameters in SARAH
  • Superpotential
  • Support of Dirac Gauginos
  • Supported Models
  • Supported gauge sectors
  • Supported global symmetries
  • Supported matter sector
  • Supported options for symmetry breaking
  • Supported particle mixing
  • Tadpole Equations
  • The renormalisation scale in SPheno
  • Tree-level calculations
  • Tree Masses
  • Two-Loop Self-Energies and Tadpoles
  • UFO
  • Usage of tadpoles equations
  • Using SPheno for two-loop masses
  • Using auxiliary parameters in SPheno
  • VEVs
  • Vertices
  • Vevacious
  • WHIZARD