Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
SARAH SARAH
  • Project overview
    • Project overview
    • Details
    • Activity
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Activity
Collapse sidebar
  • GOODSELL Mark
  • SARAHSARAH
  • Wiki
  • SPheno_threshold_corrections

Last edited by Martin Gabelmann Jun 28, 2019
Page history

SPheno_threshold_corrections

SPheno threshold corrections

Threshold corrections in Supersymmetric models

In general, the running SM parameters depend on the SUSY masses. The reason are the thresholds to match the running parameters to the measured ones. These thresholds change, when the mass spectrum changes. Therefore, one needs to iterate the procedure explained in the following until the entire loop corrected mass spectrum has converged. The calculation of the thresholds is based on Ref. but is also dynamically adjusted by SARAH to include all new physics contributions. The general procedure to obtain the running gauge and Yukawa at MZ is as follows:

Calculation of gauge couplings

The first step is the calculation of \alpha^{{{\overline{\mathrm{DR}}}}}(M_Z), \alpha_S^{{{\overline{\mathrm{DR}}}}}(M_Z) via

\alpha^{{{\overline{\mathrm{DR}}}}}(M_Z) = \frac{\alpha^{(5),\overline{\text{MS}}}(M_Z)}{1 - \Delta\alpha^{\text{SM}}(M_Z) - \Delta\alpha^{\text{NP}}(M_Z)} ,\\ \alpha_S^{{{\overline{\mathrm{DR}}}}}(M_Z) = \frac{\alpha_S^{(5),\overline{\text{MS}}}(M_Z)}{1 - \Delta\alpha_S^{\text{SM}}(M_Z) - \Delta\alpha_S^{\text{NP}}(M_Z)}

Here, \alpha_S^{(5),\overline{\text{MS}}} and \alpha^{(5),\overline{\text{MS}}} are taken as input and receive corrections from the top loops as well as form new physics (NP):

\Delta\alpha^{\text{SM}}(\mu) = \frac{\alpha}{2\pi} \left(\frac{1}{3}- \frac{16}{9} \log{\frac{m_t}{\mu}} \right), \hspace{1cm} \Delta\alpha^{\text{NP}}(\mu) =\frac{\alpha}{2\pi} \left( -\sum_i c_i \log{\frac{m_i}{\mu}} \right), \\ \Delta\alpha_S^{\text{SM}}(\mu) = \frac{\alpha_\text{s}}{2\pi} \left( -\frac{2}{3} \log{\frac{m_t}{\mu}} \right), \hspace{1cm} \Delta\alpha_S^{\text{NP}}(\mu) = \frac{\alpha_S}{2\pi}\left( \frac{1}{2}-\sum_i c_i \log{\frac{m_i}{\mu}} \right) .

The sum runs over all particles i which are not present in the SM and which are either charged or coloured. The coefficients ci depends on the charge respectively colour representation, the generic type of the particle (scalar, fermion, vector), and the degrees of freedom of the particle (real/complex boson respectively Majorana/Dirac fermion).

Calculation of the Weinberg angle

The next step is the calculation of the running Weinberg angle \sin\Theta^{{{\overline{\mathrm{DR}}}}} and electroweak VEV v. For that the one-loop corrections δ**MZ2 and δ**MW2 to the Z- and W-mass are needed. And an iterative procedure is applied with \Theta^{{{\overline{\mathrm{DR}}}}}_W = \Theta_W^{\text{SM}} in the first iteration together with:

v^2 = (M_Z^2 + \delta M_Z^2) \frac{(1- \sin^2\Theta^{{{\overline{\mathrm{DR}}}}}_W)\sin^2\Theta^{{\overline{\mathrm{DR}}}}_W}{\pi \alpha^{{{\overline{\mathrm{DR}}}}}} \\ \sin^2\Theta^{{{\overline{\mathrm{DR}}}}}_W = \frac{1}{2} - \sqrt{\frac{1}{4} - \frac{\pi \alpha^{{{\overline{\mathrm{DR}}}}}}{\sqrt{2} M_Z^2 G_F (1-\delta_r)}}

Here, GF is the Fermi constant and δr is defined by

\delta_r = \rho \frac{\delta M_W^2}{M_W^2} - \frac{\delta M_Z^2}{M_Z^2} + \delta_{VB}

where δV**B are the corrections to the muon decay μ → e**νiν̄j which are calculated at one-loop as well. The ρ parameter is calculated also at full one-loop and the known two-loop SM corrections are added.

With the obtained information, the running gauge couplings at MZ are given by

g_1^{{{\overline{\mathrm{DR}}}}}(M_Z) = \frac{\sqrt{4 \pi \alpha^{{{\overline{\mathrm{DR}}}}}(M_Z)}}{\cos\theta_{W}^{{{\overline{\mathrm{DR}}}}}(M_Z)}, \hspace{0.5cm} g_2^{{{\overline{\mathrm{DR}}}}}(M_Z) = \frac{\sqrt{4\pi \alpha^{{{\overline{\mathrm{DR}}}}}(M_Z)}}{\sin\theta_{W}^{{{\overline{\mathrm{DR}}}}}(M_Z)}, \hspace{0.5cm} g_3^{{{\overline{\mathrm{DR}}}}}(M_Z) = \sqrt{4 \pi \alpha_S^{{{\overline{\mathrm{DR}}}}}(M_Z)}

Calculation of the Yukawa couplings

The running Yukawa couplings are also calculated in an iterative way. The starting point are the running fermion masses in \overline{\mathrm{DR}} obtained from the pole masses given as input:

m_{l,\mu,\tau}^{{{\overline{\mathrm{DR}}}},\text{SM}} = m_{l,\mu,\tau} \left(1 - \frac{3}{128 \pi^2}(g^{{{\overline{\mathrm{DR}}}},2}_1+g^{{{\overline{\mathrm{DR}}}},2}_2)\right) \\ m_{d,s,b}^{{{\overline{\mathrm{DR}}}},\text{SM}} = m_{d,s,b} \left(1- \frac{\alpha^{{\overline{\mathrm{DR}}}}_S}{3\pi}-\frac{23 \alpha_S^{{{\overline{\mathrm{DR}}}},2}}{72 \pi^2} + \frac{3}{128 \pi^2} g^{{{\overline{\mathrm{DR}}}},2}_2 - \frac{13}{1152 \pi^2} g^{{{\overline{\mathrm{DR}}}},2}_1\right)\\ m_{u,c}^{{{\overline{\mathrm{DR}}}},\text{SM}} = m_{u,c} \left(1- \frac{\alpha^{{\overline{\mathrm{DR}}}}_S}{3\pi}-\frac{23 \alpha^{{{\overline{\mathrm{DR}}}},2}_S}{72 \pi^2} + \frac{3}{128 \pi^2} g^{{{\overline{\mathrm{DR}}}},2}_2 - \frac{7}{1152 \pi^2} g^{{{\overline{\mathrm{DR}}}},2}_1\right)\\ m^{{{\overline{\mathrm{DR}}}},\text{SM}}_t = m_t \left[1 + \frac{1}{16\pi^2} \left(\Delta m_t^{(1),qcd} +\Delta m_t^{(2),qcd} + \Delta m_t^{(1),ew}\right)\right]

with

\Delta m_t^{(1),qcd} = -\frac{16 \pi \alpha_S^{{\overline{\mathrm{DR}}}}}{3} \left(5 + 3 \log\frac{M_Z^2}{m_t^2} \right) \\ \Delta m_t^{(2),qcd} = -\frac{64 \pi^2 \alpha_S^{{{\overline{\mathrm{DR}}}},2} }{3} \left(\frac{1}{24}+\frac{2011}{384\pi^2}+\frac{\ln2}{12}-\frac{\zeta(3)}{8\pi^2}+\frac{123}{32\pi^2} \log\frac{M_Z^2}{m_t^2}+\frac{33}{32\pi^2} \left(\log\frac{M_Z^2}{m_t^2}\right)^2 \right)\\ \Delta m_t^{(1),ew} = - \frac{4}{9} g_2^{{{\overline{\mathrm{DR}}}},2} \sin^2 \Theta^{{\overline{\mathrm{DR}}}}_W \left(5 + 3 \log\frac{M_Z^2}{m_t^2}\right)

The two-loop parts are taken from Refs. . The masses are matched to the eigenvalues of the loop-corrected fermion mass matrices calculated as

mf(1L)(pi2)=mf(T) − Σ̃S+(pi2)−Σ̃R+(pi2)mf(T) − mf(T)Σ̃L+(pi2)

Here, the pure QCD and QED corrections are dropped in the self-energies Σ̃. Inverting this relation to get the running tree-level mass matrix mf(T) leads to Y_d^{{{\overline{\mathrm{DR}}}}}, Y_u^{{{\overline{\mathrm{DR}}}}}, Y_e^{{{\overline{\mathrm{DR}}}}}. Since the self-energies depend also one the Yukawa matrices, this calculation has to be iterated until a stable point is reached. Optionally, also the constraint that the CKM matrix is reproduced can be included in the matching.

Threshold corrections in Non-Supersymmetric models

In non-supersymmetric models, the threshold corrections of new physics are not yet implemented, but the running MS parameters are taken as starting point.

See also

References

Clone repository

Home

Index

  • Additional terms in Lagrangian
  • Advanced usage of FlavorKit
  • Advanced usage of FlavorKit to calculate new Wilson coefficients
  • Advanced usage of FlavorKit to define new observables
  • Already defined Operators in FlavorKit
  • Already defined observables in FlavorKit
  • Auto-generated templates for particles.m and parameters.m
  • Automatic index contraction
  • Basic definitions for a non-supersymmetric model
  • Basic definitions for a supersymmetric model
  • Basic usage of FlavorKit
  • Boundary conditions in SPheno
  • CalcHep CompHep
  • Calculation of flavour and precision observables with SPheno
  • Checking the particles and parameters within Mathematica
  • Checks of implemented models
  • Conventions
  • Decay calculation with SPheno
  • Defined FlavorKit parameters
  • Definition of the properties of different eigenstates
  • Delete Particles
  • Different sets of eigenstates
  • Diphoton and digluon vertices with SPheno
  • Dirac Spinors
  • FeynArts
  • Fine-Tuning calculations with SPheno
  • Flags for SPheno Output
  • Flags in SPheno LesHouches file
  • FlavorKit
  • FlavorKit Download and Installation
  • Flavour Decomposition
  • GUT scale condition in SPheno
  • Gauge Symmetries SUSY
  • Gauge Symmetries non-SUSY
  • Gauge fixing
  • Gauge group constants
  • General information about Field Properties
  • General information about model implementations
  • Generating files with particle properties
  • Generic RGE calculation
  • Global Symmetries SUSY
  • Global Symmetries non-SUSY
  • Handling of Tadpoles with SPheno
  • Handling of non-fundamental representations
  • HiggsBounds
  • Higher dimensionsal terms in superpotential
  • Input parameters of SPheno
  • Installation
  • Installing Vevacious
  • LHCP
  • LHPC
  • LaTeX
  • Lagrangian
  • Loop Masses
  • Loop calculations
  • Loop functions
  • Low or High scale SPheno version
  • Main Commands
  • Main Model File
  • Matching to the SM in SPheno
  • MicrOmegas
  • ModelOutput
  • Model files for Monte-Carlo tools
  • Model files for other tools
  • Models with Thresholds in SPheno
  • Models with another gauge group at the SUSY scale
  • Models with several generations of Higgs doublets
  • More precise mass spectrum calculation
  • No SPheno output possible
  • Nomenclature for fields in non-supersymmetric models
  • Nomenclature for fields in supersymmetric models
  • One-Loop Self-Energies and Tadpoles
  • One-Loop Threshold Corrections in Scalar Sectors
  • Options SUSY Models
  • Options non-SUSY Models
  • Parameters.m
  • Particle Content SUSY
  • Particle Content non-SUSY
  • Particles.m
  • Phases
  • Potential
  • Presence of super-heavy particles
  • RGE Running with Mathematica
  • RGEs
  • Renormalisation procedure of SPheno
  • Rotations angles in SPheno
  • Rotations in gauge sector
  • Rotations in matter sector
  • SARAH in a Nutshell
  • SARAH wiki
  • SLHA input for Vevacious
  • SPheno
  • SPheno Higgs production
  • SPheno Output
  • SPheno and Monte-Carlo tools
  • SPheno files
  • SPheno mass calculation
  • SPheno threshold corrections
  • Setting up SPheno.m
  • Setting up Vevacious
  • Setting up the SPheno properties
  • Special fields and parameters in SARAH
  • Superpotential
  • Support of Dirac Gauginos
  • Supported Models
  • Supported gauge sectors
  • Supported global symmetries
  • Supported matter sector
  • Supported options for symmetry breaking
  • Supported particle mixing
  • Tadpole Equations
  • The renormalisation scale in SPheno
  • Tree-level calculations
  • Tree Masses
  • Two-Loop Self-Energies and Tadpoles
  • UFO
  • Usage of tadpoles equations
  • Using SPheno for two-loop masses
  • Using auxiliary parameters in SPheno
  • VEVs
  • Vertices
  • Vevacious
  • WHIZARD