Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
SARAH SARAH
  • Project overview
    • Project overview
    • Details
    • Activity
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Activity
Collapse sidebar
  • GOODSELL Mark
  • SARAHSARAH
  • Wiki
  • General_information_about_model_implementations

Last edited by Martin Gabelmann Jul 22, 2019
Page history

General_information_about_model_implementations

General information about model implementations

All information of the different models are saved in three different files which have to be in one directory

$SARAH_Directory/Models/$ModelName/

The three files are

  • one model file with the same name as the model directory (ModelName.m): Main Model File
  • a file containing additional information about the particles of the model (particles.m): particles.m
  • a file containing additional information about the parameters of the model (parameters.m): parameters.m

Only the first file is really necessary for calculating the Lagrangian. It contains the following information:

  • Basic definitions for a non-supersymmetric model or Basic definitions for a supersymmetric model
  • Definition of the properties of different eigenstates

For defining properties of parameters and particles and for producing an appropriate output the other two files are needed.
There is also the option to auto-generate templates for particles.m and parameters.m.

Sub-Models/Model-Categories

In some cases a model might be implemented in different bases, such as (super-)CKM or with diagonal Yukawas which may be managed in the same directory. Similary it is convenient to store models that belong to a certain category (e.g. all SplitSUSY low-energy EFTs) within one directory.

To do so, the following directory structure is supported:

  • $SARAH_Directory/Models/...
    • $Model/$Model.m
    • $Model/$SubModel1/$Model-$SubModel1.m
    • $Model/$SubModel2/$Model-$SubModel2.m

where each directory contains a model .m file as well as a parameter.m and particles.m
The models are started using:

  • Start["$Model"],
  • Start["$Model","$SubModel1"] or
  • Start["$Model","$SubModel2"]

e.g. Start["SM","CKM"] starts the Standard Model with the CKM basis.
The maximum depth of sub-models is one.

Custom Model Directory

A custom model directory can be set in the file SARAH.config

SARAH[InputDirectories]={
ToFileName[{$sarahDir, "Models"}],
"/home/$user/Documents/SARAH-Models/"
};

which is located in the SARAH root-directory.

Clone repository

Home

Index

  • Additional terms in Lagrangian
  • Advanced usage of FlavorKit
  • Advanced usage of FlavorKit to calculate new Wilson coefficients
  • Advanced usage of FlavorKit to define new observables
  • Already defined Operators in FlavorKit
  • Already defined observables in FlavorKit
  • Auto-generated templates for particles.m and parameters.m
  • Automatic index contraction
  • Basic definitions for a non-supersymmetric model
  • Basic definitions for a supersymmetric model
  • Basic usage of FlavorKit
  • Boundary conditions in SPheno
  • CalcHep CompHep
  • Calculation of flavour and precision observables with SPheno
  • Checking the particles and parameters within Mathematica
  • Checks of implemented models
  • Conventions
  • Decay calculation with SPheno
  • Defined FlavorKit parameters
  • Definition of the properties of different eigenstates
  • Delete Particles
  • Different sets of eigenstates
  • Diphoton and digluon vertices with SPheno
  • Dirac Spinors
  • FeynArts
  • Fine-Tuning calculations with SPheno
  • Flags for SPheno Output
  • Flags in SPheno LesHouches file
  • FlavorKit
  • FlavorKit Download and Installation
  • Flavour Decomposition
  • GUT scale condition in SPheno
  • Gauge Symmetries SUSY
  • Gauge Symmetries non-SUSY
  • Gauge fixing
  • Gauge group constants
  • General information about Field Properties
  • General information about model implementations
  • Generating files with particle properties
  • Generic RGE calculation
  • Global Symmetries SUSY
  • Global Symmetries non-SUSY
  • Handling of Tadpoles with SPheno
  • Handling of non-fundamental representations
  • HiggsBounds
  • Higher dimensionsal terms in superpotential
  • Input parameters of SPheno
  • Installation
  • Installing Vevacious
  • LHCP
  • LHPC
  • LaTeX
  • Lagrangian
  • Loop Masses
  • Loop calculations
  • Loop functions
  • Low or High scale SPheno version
  • Main Commands
  • Main Model File
  • Matching to the SM in SPheno
  • MicrOmegas
  • ModelOutput
  • Model files for Monte-Carlo tools
  • Model files for other tools
  • Models with Thresholds in SPheno
  • Models with another gauge group at the SUSY scale
  • Models with several generations of Higgs doublets
  • More precise mass spectrum calculation
  • No SPheno output possible
  • Nomenclature for fields in non-supersymmetric models
  • Nomenclature for fields in supersymmetric models
  • One-Loop Self-Energies and Tadpoles
  • One-Loop Threshold Corrections in Scalar Sectors
  • Options SUSY Models
  • Options non-SUSY Models
  • Parameters.m
  • Particle Content SUSY
  • Particle Content non-SUSY
  • Particles.m
  • Phases
  • Potential
  • Presence of super-heavy particles
  • RGE Running with Mathematica
  • RGEs
  • Renormalisation procedure of SPheno
  • Rotations angles in SPheno
  • Rotations in gauge sector
  • Rotations in matter sector
  • SARAH in a Nutshell
  • SARAH wiki
  • SLHA input for Vevacious
  • SPheno
  • SPheno Higgs production
  • SPheno Output
  • SPheno and Monte-Carlo tools
  • SPheno files
  • SPheno mass calculation
  • SPheno threshold corrections
  • Setting up SPheno.m
  • Setting up Vevacious
  • Setting up the SPheno properties
  • Special fields and parameters in SARAH
  • Superpotential
  • Support of Dirac Gauginos
  • Supported Models
  • Supported gauge sectors
  • Supported global symmetries
  • Supported matter sector
  • Supported options for symmetry breaking
  • Supported particle mixing
  • Tadpole Equations
  • The renormalisation scale in SPheno
  • Tree-level calculations
  • Tree Masses
  • Two-Loop Self-Energies and Tadpoles
  • UFO
  • Usage of tadpoles equations
  • Using SPheno for two-loop masses
  • Using auxiliary parameters in SPheno
  • VEVs
  • Vertices
  • Vevacious
  • WHIZARD