Already defined observables in FlavorKit
Many observables are already implemented in FlavorKit and can be used out-of-the-box
Lepton flavor observables
Lepton flavor violation in the SM or MSSM without neutrino masses vanishes exactly. Even adding Dirac neutrino masses to the SM predicts LFV rates which are far beyond the experimental reach. However, many extensions of the SM can introduce new sources for LFV of a size which is testable nowadays. The best-known examples are SUSY and non-SUSY models with high- or low-scale seesaw mechanism, models with vector-like leptons and SUSY models with R-parity violation, see for instance Refs. .
We discuss in the following the implementation of the most important LFV observables in SARAH and SPheno using the previously defined operators which are calculated by SPheno.
Radiative decays of leptons (ℓα → ℓβγ)
The decay width is given by
\Gamma \left( \ell_\alpha \to \ell_\beta \gamma \right) = \frac{\alpha m_{\ell_\alpha}^5}{4} \left( |K_2^L|^2 + |K_2^R|^2 \right) \, ,
where α is the fine structure constant and the dipole Wilson coefficients K2L, R are defined in Eq..
NameProcess = "LLpGamma";
NameObservables = {{muEgamma, 701, "BR(mu->e gamma)"},
{tauEgamma, 702, "BR(tau->e gamma)"},
{tauMuGamma, 703, "BR(tau->mu gamma)"}};
NeededOperators = {K2L, K2R};
Body = "LLpGamma.f90";
Real(dp) :: width
Integer :: i1, gt1, gt2
! ----------------------------------------------------------------
! l -> l' gamma
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on J. Hisano et al, PRD 53 (1996) 2442 [hep-ph/9510309]
! ----------------------------------------------------------------
Do i1=1,3
If (i1.eq.1) Then ! mu -> e gamma
gt1 = 2
gt2 = 1
Elseif (i1.eq.2) Then !tau -> e gamma
gt1 = 3
gt2 = 1
Else ! tau -> mu gamma
gt1 = 3
gt2 = 2
End if
width=0.25_dp*mf_l(gt1)**5*(Abs(K2L(gt1,gt2))**2 &
& +Abs(K2R(gt1,gt2))**2)*Alpha
If (i1.eq.1) Then
muEgamma = width/(width+GammaMu)
Elseif (i1.eq.2) Then
tauEgamma = width/(width+GammaTau)
Else
tauMuGamma = width/(width+GammaTau)
End if
End do
Decays into three leptons (ℓα → 3****ℓβ)
The decay width is given by
\Gamma \left( \ell_\alpha \to 3 \ell_\beta \right) = \frac{m_{\ell_\alpha}^5}{512 \pi^3} \left[ e^4 \, \left( \left| K_2^L \right|^2 + \left| K_2^R \right|^2 \right) \left( \frac{16}{3} \log{\frac{m_{\ell_\alpha}}{m_{\ell_\beta}}} - \frac{22}{3} \right) \right. \\ + \frac{1}{24} \left( \left| A_{LL}^S \right|^2 + \left| A_{RR}^S \right|^2 \right) + \frac{1}{12} \left( \left| A_{LR}^S \right|^2 + \left| A_{RL}^S \right|^2 \right) \nonumber \\ + \frac{2}{3} \left( \left| \hat A_{LL}^V \right|^2 + \left| \hat A_{RR}^V \right|^2 \right) + \frac{1}{3} \left( \left| \hat A_{LR}^V \right|^2 + \left| \hat A_{RL}^V \right|^2 \right) + 6 \left( \left| A_{LL}^T \right|^2 + \left| A_{RT}^T \right|^2 \right) \nonumber \\ + \frac{e^2}{3} \left( K_2^L A_{RL}^{S \ast} + K_2^R A_{LR}^{S \ast} + c.c. \right) - \frac{2 e^2}{3} \left( K_2^L \hat A_{RL}^{V \ast} + K_2^R \hat A_{LR}^{V \ast} + c.c. \right) \nonumber \\ - \frac{4 e^2}{3} \left( K_2^L \hat A_{RR}^{V \ast} + K_2^R \hat A_{LL}^{V \ast} + c.c. \right) \nonumber \\ - \left. \frac{1}{2} \left( A_{LL}^S A_{LL}^{T \ast} + A_{RR}^S A_{RR}^{T \ast} + c.c. \right) - \frac{1}{6} \left( A_{LR}^S \hat A_{LR}^{V \ast} + A_{RL}^S \hat A_{RL}^{V \ast} + c.c. \right) \right] \nonumber \, .
Here we have defined
ÂX**YV = AX**YV + e2K1X (X,Y=L,R) .
The mass of the leptons in the final state has been neglected in this formula, with the exception of the dipole terms K2L, R, where an infrared divergence would otherwise occur due to the massless photon propagator. Eq. is in agreement with , but also includes the coefficients AL**RS and AR**LS.
NameProcess = "Lto3Lp";
NameObservables = {{BRmuTo3e, 901, "BR(mu->3e)"},
{BRtauTo3e, 902, "BR(tau->3e)"},
{BRtauTo3mu, 903, "BR(tau->3mu)"}
};
ExternalStates = {Electron};
NeededOperators = {K1L, K1R, K2L, K2R,
O4lSLL, O4lSRR, O4lSRL, O4lSLR ,
O4lVRR, O4lVLL, O4lVRL, O4lVLR ,
O4lTLL, O4lTRR };
Body = "Lto3Lp.f90";
Complex(dp) :: cK1L, cK1R, cK2L, cK2R
Complex(dp) :: CSLL, CSRR, CSLR, CSRL, CVLL, &
& CVRR, CVLR, CVRL, CTLL, CTRR
Real(dp) :: BRdipole, BRscalar, BRvector, BRtensor
Real(dp) :: BRmix1, BRmix2, BRmix3, BRmix4, GammaLFV
Real(dp) :: e2, e4
Integer :: i1, gt1, gt2, gt3, gt4
! ----------------------------------------------------------------
! l -> 3 l'
! Observable implemented by W. Porod, F. Staub and A. Vicente
! ----------------------------------------------------------------
e2 = (4._dp*Pi*Alpha_MZ)
e4 = e2**2
Do i1=1,3
If (i1.eq.1) Then
gt1 = 2
gt2 = 1
Elseif (i1.eq.2) Then
gt1 = 3
gt2 = 1
Else
gt1 = 3
gt2 = 2
End if
gt3 = gt2
gt4 = gt2
cK1L = K1L(gt1,gt2)
cK1R = K1R(gt1,gt2)
cK2L = K2L(gt1,gt2)
cK2R = K2R(gt1,gt2)
CSLL = O4lSLL(gt1,gt2,gt3,gt4)
CSRR = O4lSRR(gt1,gt2,gt3,gt4)
CSLR = O4lSLR(gt1,gt2,gt3,gt4)
CSRL = O4lSRL(gt1,gt2,gt3,gt4)
CVLL = O4lVLL(gt1,gt2,gt3,gt4)
CVRR = O4lVRR(gt1,gt2,gt3,gt4)
CVLR = O4lVLR(gt1,gt2,gt3,gt4)
CVRL = O4lVRL(gt1,gt2,gt3,gt4)
CVLL = CVLL + e2*cK1L
CVRR = CVRR + e2*cK1R
CVLR = CVLR + e2*cK1L
CVRL = CVRL + e2*cK1R
CTLL = O4lTLL(gt1,gt2,gt3,gt4)
CTRR = O4lTRR(gt1,gt2,gt3,gt4)
! Photonic dipole contributions
BRdipole = (Abs(cK2L)**2+Abs(cK2R)**2)&
&*(16._dp*Log(mf_l(gt1)/mf_l(gt2))-22._dp)/3._dp
! Scalar contributions
BRscalar = (Abs(CSLL)**2+Abs(CSRR)**2)/24._dp&
&+(Abs(CSLR)**2+Abs(CSRL)**2)/12._dp
! Vector contributions
BRvector = 2._dp*(Abs(CVLL)**2+Abs(CVRR)**2)/3._dp&
&+(Abs(CVLR)**2+Abs(CVRL)**2)/3._dp
! Tensor contributions
BRtensor = 6._dp*(Abs(CTLL)**2+Abs(CTRR)**2)
! Mix: dipole x scalar
BRmix1 = 2._dp/3._dp*Real(cK2L*Conjg(CSRL) + cK2R*Conjg(CSLR),dp)
! Mix: dipole x vector
BRmix2 = -4._dp/3._dp*Real(cK2L*Conjg(CVRL) + cK2R*Conjg(CVLR),dp) &
& -8._dp/3._dp*Real(cK2L*Conjg(CVRR) + cK2R*Conjg(CVLL),dp)
! Mix: scalar x vector
BRmix3 = -1._dp/3._dp*Real(CSLR*Conjg(CVLR) + CSRL*Conjg(CVRL),dp)
! Mix: scalar x tensor
BRmix4 = -1._dp*Real(CSLL*Conjg(CTLL) + CSRR*Conjg(CTRR),dp)
GammaLFV = oo512pi3*mf_l(gt1)**5* &
& (e4*BRdipole + BRscalar + BRvector + BRtensor &
& + e2*BRmix1 + e2*BRmix2 + BRmix3 + BRmix4)
!----------------------------------------------------------------------
!taking alpha(Q=0) instead of alpha(m_Z) as this contains most of the
!running of the Wilson coefficients
!----------------------------------------------------------------------
If (i1.Eq.1) Then
BRmuTo3e=GammaLFV/GammaMu
Else If (i1.Eq.2) Then
BRtauTo3e=GammaLFV/GammaTau
Else
BRtauTo3mu=GammaLFV/GammaTau
End If
End do
Coherent muon-electron conversion in nuclei
The conversion rate, relative to the the muon capture rate, can be expressed as
{\rm CR} (\mu- e, {\rm Nucleus}) = \frac{p_e \, E_e \, m_\mu^3 \, G_F^2 \, \alpha^3 \, Z_{\rm eff}^4 \, F_p^2}{8 \, \pi^2 \, Z} \nonumber \\ \times \left\{ \left| (Z + N) \left( g_{LV}^{(0)} + g_{LS}^{(0)} \right) + (Z - N) \left( g_{LV}^{(1)} + g_{LS}^{(1)} \right) \right|^2 + \right. \nonumber \\ \ \ \ \ \left. \,\, \left| (Z + N) \left( g_{RV}^{(0)} + g_{RS}^{(0)} \right) + (Z - N) \left( g_{RV}^{(1)} + g_{RS}^{(1)} \right) \right|^2 \right\} \frac{1}{\Gamma_{\rm capt}}\,.
Z and N are the number of protons and neutrons in the nucleus and Z_{\rm eff}
is the effective atomic charge . Similarly, GF is the Fermi constant, Fp is the nuclear matrix element and \Gamma_{\rm capt}
represents the total muon capture rate. α is the fine structure constant, pe and Ee ( ≃mμ in the numerical evaluation) are the momentum and energy of the electron and mμ is the muon mass. In the above, gX**K(0) and gX**K(1) (with X = L, R and K = S, V) can be written in terms of effective couplings at the quark level as
g_{XK}^{(0)} = \frac{1}{2} \sum_{q = u,d,s} \left( g_{XK(q)} G_K^{(q,p)} + g_{XK(q)} G_K^{(q,n)} \right)\,, \nonumber \\ g_{XK}^{(1)} = \frac{1}{2} \sum_{q = u,d,s} \left( g_{XK(q)} G_K^{(q,p)} - g_{XK(q)} G_K^{(q,n)} \right)\,.
For coherent μ − e conversion in nuclei, only scalar (S) and vector (V) couplings contribute. Furthermore, sizable contributions are expected only from the u, d, s quark flavors. The numerical values of the relevant GK factors are
G_V^{(u, p)}\, =\, G_V^{(d, n)\,} =\, 2 \,;\, \ \ \ \ G_V^{(d, p)}\, =\, G_V^{(u, n)}\, = 1\,; \nonumber \\ G_S^{(u, p)}\, =\, G_S^{(d, n)}\, =\, 5.1\,;\, \ \ G_S^{(d, p)}\, =\, G_S^{(u, n)}\, = \,4.3 \,;\, \nonumber \\ G_S^{(s, p)}\,=\, G_S^{(s, n)}\, = \,2.5\,.
Finally, the gX**K(q) coefficients can be written in terms of the Wilson coefficients in Eqs., and as
g_{LV(q)} = \frac{\sqrt{2}}{G_F} \left[ e^2 Q_q \left( K_1^L - K_2^R \right)- \frac{1}{2} \left( C_{\ell\ell qq}^{VLL} + C_{\ell\ell qq}^{VLR} \right) \right] \\ g_{RV(q)} = \left. g_{LV(q)} \right|_{L \to R} \\ g_{LS(q)} = - \frac{\sqrt{2}}{G_F} \frac{1}{2} \left( C_{\ell\ell qq}^{SLL} + C_{\ell\ell qq}^{SLR} \right) \\ g_{RS(q)} = \left. g_{LS(q)} \right|_{L \to R} \, .
Here Qq is the quark electric charge (Qd = −1/3, Qu = 2/3) and Cℓℓq**qIXK = BX**YK (CX**YK) for d-quarks (u-quarks), with X = L, R and K = S, V.
NameProcess = "MuEconversion";
NameObservables = {{CRmuEAl, 800, "CR(mu-e, Al)"},
{CRmuETi, 801, "CR(mu-e, Ti)"},
{CRmuESr, 802, "CR(mu-e, Sr)"},
{CRmuESb, 803, "CR(mu-e, Sb)"},
{CRmuEAu, 804, "CR(mu-e, Au)"},
{CRmuEPb, 805, "CR(mu-e, Pb)"}
};
NeededOperators = {K1L, K1R, K2L, K2R,
OllddSLL, OllddSRR, OllddSRL, OllddSLR, OllddVRR, OllddVLL,
OllddVRL, OllddVLR, OllddTLL, OllddTLR, OllddTRL, OllddTRR,
OlluuSLL, OlluuSRR, OlluuSRL, OlluuSLR, OlluuVRR, OlluuVLL,
OlluuVRL, OlluuVLR, OlluuTLL, OlluuTLR, OlluuTRL, OlluuTRR
};
Body = "MuEconversion.f90";
Complex(dp) :: gPLV(3), gPRV(3)
Complex(dp),Parameter :: mat0(3,3)=0._dp
Real(dp) :: Znuc,Nnuc, Zeff, Fp, GammaCapt, GSp(3), GSn(3), &
& GVp(3), GVn(3), e2
Complex(dp) :: Lcont,Rcont,gLS(3),gRS(3),gLV(3),gRV(3),g0LS,g0RS, &
& g0LV,g0RV,g1LS,g1RS,g1LV,g1RV
Integer :: i1, i2
! ----------------------------------------------------------------
! Coherent mu-e conversion in nuclei
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on Y. Kuno, Y. Okada, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265]
! and E. Arganda et al, JHEP 0710 (2007) 104 [arXiv:0707.2955]
! ----------------------------------------------------------------
e2 = 4._dp*Pi*Alpha_MZ
! 1: uu
! 2: dd
! 3: ss
! vector couplings
gLV(1) = 0.5_dp*(OlluuVLL(2,1,1,1) + OlluuVLR(2,1,1,1))
gRV(1) = 0.5_dp*(OlluuVRL(2,1,1,1) + OlluuVRR(2,1,1,1))
gLV(2) = 0.5_dp*(OllddVLL(2,1,1,1) + OllddVLR(2,1,1,1))
gRV(2) = 0.5_dp*(OllddVRL(2,1,1,1) + OllddVRR(2,1,1,1))
gLV(3) = 0.5_dp*(OllddVLL(2,1,2,2) + OllddVLR(2,1,2,2))
gRV(3) = 0.5_dp*(OllddVRL(2,1,2,2) + OllddVRR(2,1,2,2))
gLV = -gLV*Sqrt(2._dp)/G_F
gRV = -gRV*Sqrt(2._dp)/G_F
gPLV(1) = (K1L(2,1)-K2R(2,1))*(2._dp/3._dp)
gPRV(1) = (K1R(2,1)-K2L(2,1))*(2._dp/3._dp)
gPLV(2) = (K1L(2,1)-K2R(2,1))*(-1._dp/3._dp)
gPRV(2) = (K1R(2,1)-K2L(2,1))*(-1._dp/3._dp)
gPLV(3) = (K1L(2,1)-K2R(2,1))*(-1._dp/3._dp)
gPRV(3) = (K1R(2,1)-K2L(2,1))*(-1._dp/3._dp)
gPLV = gPLV*Sqrt(2._dp)/G_F*e2
gPRV = gPRV*Sqrt(2._dp)/G_F*e2
gLV=gPLV+gLV
gRV=gPRV+gRV
! scalar couplings
gLS(1) = 0.5_dp*(OlluuSLL(2,1,1,1)+OlluuSLR(2,1,1,1))
gRS(1) = 0.5_dp*(OlluuSRL(2,1,1,1)+OlluuSRR(2,1,1,1))
gLS(2) = 0.5_dp*(OllddSLL(2,1,1,1)+OllddSLR(2,1,1,1))
gRS(2) = 0.5_dp*(OllddSRL(2,1,1,1)+OllddSRR(2,1,1,1))
gLS(3) = 0.5_dp*(OllddSLL(2,1,2,2)+OllddSLR(2,1,2,2))
gRS(3) = 0.5_dp*(OllddSRL(2,1,2,2)+OllddSRR(2,1,2,2))
gLS = -gLS*Sqrt(2._dp)/G_F
gRS = -gRS*Sqrt(2._dp)/G_F
Do i1=1,6
If(i1.eq.1) Then
Znuc=13._dp
Nnuc=14._dp
Zeff=11.5_dp
Fp=0.64_dp
GammaCapt=4.64079e-19_dp
Else If(i1.eq.2) Then
Znuc=22._dp
Nnuc=26._dp
Zeff=17.6_dp
Fp=0.54_dp
GammaCapt=1.70422e-18_dp
Else If(i1.eq.3) Then
Znuc=38._dp
Nnuc=42._dp
Zeff=25.0_dp
Fp=0.39_dp
GammaCapt=4.61842e-18_dp
Else If(i1.eq.4) Then
Znuc=51._dp
Nnuc=70._dp
Zeff=29.0_dp
Fp=0.32_dp
GammaCapt=6.71711e-18_dp
Else If(i1.eq.5) Then
Znuc=79._dp
Nnuc=118._dp
Zeff=33.5_dp
Fp=0.16_dp
GammaCapt=8.59868e-18_dp
Else If(i1.eq.6) Then
Znuc=82._dp
Nnuc=125._dp
Zeff=34.0_dp
Fp=0.15_dp
GammaCapt=8.84868e-18_dp
End If
! numerical values
! based on Y. Kuno, Y. Okada, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265]
! and T. S. Kosmas et al, PLB 511 (2001) 203 [hep-ph/0102101]
GSp=(/5.1,4.3,2.5/)
GSn=(/4.3,5.1,2.5/)
GVp=(/2.0,1.0,0.0/)
GVn=(/1.0,2.0,0.0/)
g0LS=0._dp
g0RS=0._dp
g0LV=0._dp
g0RV=0._dp
g1LS=0._dp
g1RS=0._dp
g1LV=0._dp
g1RV=0._dp
Do i2=1,3
g0LS=g0LS+0.5_dp*gLS(i2)*(GSp(i2)+GSn(i2))
g0RS=g0RS+0.5_dp*gRS(i2)*(GSp(i2)+GSn(i2))
g0LV=g0LV+0.5_dp*gLV(i2)*(GVp(i2)+GVn(i2))
g0RV=g0RV+0.5_dp*gRV(i2)*(GVp(i2)+GVn(i2))
g1LS=g1LS+0.5_dp*gLS(i2)*(GSp(i2)-GSn(i2))
g1RS=g1RS+0.5_dp*gRS(i2)*(GSp(i2)-GSn(i2))
g1LV=g1LV+0.5_dp*gLV(i2)*(GVp(i2)-GVn(i2))
g1RV=g1RV+0.5_dp*gRV(i2)*(GVp(i2)-GVn(i2))
End Do
Lcont=(Znuc+Nnuc)*(g0LV+g0LS)+(Znuc-Nnuc)*(g1LV-g1LS)
Rcont=(Znuc+Nnuc)*(g0RV+g0RS)+(Znuc-Nnuc)*(g1RV-g1RS)
! Conversion rate
If (i1.eq.1) Then
CRMuEAl =oo8pi2*mf_l(2)**5*G_F**2*Alpha**3*Zeff**4*Fp**2/Znuc*&
& (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt
Else if (i1.eq.2) Then
CRMuETi =oo8pi2*mf_l(2)**5*G_F**2*Alpha**3*Zeff**4*Fp**2/Znuc*&
& (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt
Else if (i1.eq.3) Then
CRMuESr =oo8pi2*mf_l(2)**5*G_F**2*Alpha**3*Zeff**4*Fp**2/Znuc*&
& (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt
Else if (i1.eq.4) Then
CRMuESb =oo8pi2*mf_l(2)**5*G_F**2*Alpha**3*Zeff**4*Fp**2/Znuc*&
& (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt
Else if (i1.eq.5) Then
CRMuEAu =oo8pi2*mf_l(2)**5*G_F**2*Alpha**3*Zeff**4*Fp**2/Znuc*&
& (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt
Else if (i1.eq.6) Then
CRMuEPb =oo8pi2*mf_l(2)**5*G_F**2*Alpha**3*Zeff**4*Fp**2/Znuc*&
& (Abs(Lcont)**2+Abs(Rcont)**2)/GammaCapt
End if
End do
Tau decays into mesons (τ → P****ℓ)
Our analytical expressions for τ → Pℓ, where ℓ = e, μ and P is a pseudoscalar meson, generalize the results in . The decay width is given by
\Gamma \left( \tau \to \ell P \right) = \frac{1}{4 \pi} \frac{\lambda^{1/2}(m_\tau^2,m_\ell^2,m_P^2)}{m_\tau^2} \frac{1}{2} \sum_{i,f} |\mathcal{M}_{\tau \ell P}|^2 \, ,
where the averaged squared amplitude can be written as
\frac{1}{2} \sum_{i,f} |\mathcal{M}_{\tau \ell P}|^2 = \frac{1}{4 m_\tau} \sum_{I,J = S,V} \left[ 2 m_\tau m_\ell \left( a_P^I a_P^{J \, \ast} - b_P^I b_P^{J \, \ast} \right) + (m_\tau^2 + m_\ell^2 - m_P^2) \left( a_P^I a_P^{J \, \ast} + b_P^I b_P^{J \, \ast} \right) \right] \, .
The coefficients aPS, V and bPS, V can be expressed in terms of the Wilson coefficients in Eqs. and as
a_P^S = \frac{1}{2} f_\pi \, \sum_{X = L,R} \left[ \frac{D_X^d(P)}{m_d} \left( B^S_{LX} + B^S_{RX} \right) + \frac{D_X^u(P)}{m_u} \left( C^S_{LX} + C^S_{RX} \right) \right] \\ b_P^S = \frac{1}{2} f_\pi \, \sum_{X = L,R} \left[ \frac{D_X^d(P)}{m_d} \left( B^S_{RX} - B^S_{LX} \right) + \frac{D_X^u(P)}{m_u} \left( C^S_{RX} - C^S_{LX} \right) \right] \\ a_P^V = \frac{1}{4} f_\pi \, C(P) (m_\tau - m_\ell) \left[ - B_{LL}^V + B_{LR}^V - B_{RL}^V + B_{RR}^V \right. \nonumber \\ \left. + C_{LL}^V - C_{LR}^V + C_{RL}^V - C_{RR}^V \right] \\ b_P^V = \frac{1}{4} f_\pi \, C(P) (m_\tau + m_\ell) \left[ - B_{LL}^V + B_{LR}^V + B_{RL}^V - B_{RR}^V \right. \nonumber \\ \left. + C_{LL}^V - C_{LR}^V - C_{RL}^V + C_{RR}^V \right] \, .
In these expressions md and mu are the down- and up-quark masses, respectively, fπ is the pion decay constant and the coefficients C(P),DL, Rd, u(P) take different forms for each pseudoscalar meson P . For P = π one has
C(\pi) = 1 \\ D_L^d(\pi) = - \frac{m_\pi^2}{4} \\ D_L^u(\pi) = \frac{m_\pi^2}{4} \, ,
for P = η
C(\eta) = \frac{1}{\sqrt{6}} \left( \sin \theta_\eta + \sqrt{2} \cos \theta_\eta \right) \\ D_L^d(\eta) = \frac{1}{4 \sqrt{3}} \left[ (3 m_\pi^2 - 4 m_K^2) \cos \theta_\eta - 2 \sqrt{2} m_K^2 \sin \theta_\eta \right] \\ D_L^u(\eta) = \frac{1}{4 \sqrt{3}} m_\pi^2 \left( \cos \theta_\eta - \sqrt{2} \sin \theta_\eta \right) \, ,
and for P = η′
C(\eta^\prime) = \frac{1}{\sqrt{6}} \left( \sqrt{2} \sin \theta_\eta - \cos \theta_\eta \right) \\ D_L^d(\eta^\prime) = \frac{1}{4 \sqrt{3}} \left[ (3 m_\pi^2 - 4 m_K^2) \sin \theta_\eta + 2 \sqrt{2} m_K^2 \cos \theta_\eta \right] \\ D_L^u(\eta^\prime) = \frac{1}{4 \sqrt{3}} m_\pi^2 \left( \sin \theta_\eta + \sqrt{2} \cos \theta_\eta \right) \, .
Here mπ and mK are the masses of the neutral pion and Kaon, respectively, and θη is the η − η′ mixing angle. In addition, DRd, u(P)= − (DLd, u(P))*.
Notice that the Wilson coefficients in Eq. include all pseudoscalar and axial contributions to τ → ℓP. Therefore, this goes beyond some well-known results in the literature, see for example , where box contributions were neglected.
NameProcess = "TauLMeson";
NameObservables = {{BrTautoEPi, 2001, "BR(tau->e pi)"},
{BrTautoEEta, 2002, "BR(tau->e eta)"},
{BrTautoEEtap, 2003, "BR(tau->e eta')"},
{BrTautoMuPi, 2004, "BR(tau->mu pi)"},
{BrTautoMuEta, 2005, "BR(tau->mu eta)"},
{BrTautoMuEtap, 2006, "BR(tau->mu eta')"}};
NeededOperators = {OllddSLL, OllddSRR, OllddSRL, OllddSLR,
OllddVRR, OllddVLL, OllddVRL, OllddVLR,
OlluuSLL, OlluuSRR, OlluuSRL, OlluuSLR,
OlluuVRR, OlluuVLL, OlluuVRL, OlluuVLR
};
Body = "TauLMeson.f90";
Real(dp) :: Fpi, thetaEta, mPi, mK, mEta, mEtap, meson_abs_T2, cont, &
& mP, CP, factor, BR
Complex(dp) :: BSLL, BSLR, BSRL, BSRR, BVLL, BVLR, BVRL, BVRR, &
& CSLL, CSLR, CSRL, CSRR, CVLL, CVLR, CVRL, CVRR, aP(2), bP(2), &
& DLdP, DRdP, DLuP, DRuP
Integer :: i1, i2, out, k1, k2
! ----------------------------------------------------------------
! tau -> l meson
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Generalizes the analytical expressions in
! E. Arganda et al, JHEP 0806 (2008) 079 [arXiv:0803.2039]
! ----------------------------------------------------------------
Fpi=0.0924_dp! Pion decay constant in GeV
thetaEta=-Pi/10._dp! eta-eta' mixing angle
mPi=0.13497_dp! Pion mass in GeV
mK=0.49761_dp! Kaon mass in GeV
mEta=0.548_dp! Eta mass in GeV
mEtap=0.958_dp! Eta' mass in GeV
!Mesons:
!1:Pi0
!2:Eta
!3:Eta'
Do i1=1,3
If(i1.eq.1) Then !1:Pi0
mP = mPi
CP = 1._dp
DLdP = - mPi**2/4._dp
DRdP = - Conjg(DLdP)
DLuP = mPi**2/4._dp
DRuP = - Conjg(DLuP)
Else If(i1.eq.2) Then !2:Eta
mP = mEta
CP = (Sin(thetaEta)+Sqrt(2._dp)*Cos(thetaEta))/Sqrt(6._dp)
DLdP = 1._dp/(4._dp*Sqrt(3._dp))*((3._dp*mPi**2-4._dp*mK**2) &
& *Cos(thetaEta)-2._dp*Sqrt(2._dp)*mK**2*Sin(thetaEta))
DRdP = - Conjg(DLdP)
DLuP = 1._dp/(4._dp*Sqrt(3._dp))*mPi**2*(Cos(thetaEta) &
& -Sqrt(2._dp)*Sin(thetaEta))
DRuP = - Conjg(DLuP)
Else If(i1.eq.3) Then !3:Eta'
mP = mEtap
CP = (Sqrt(2._dp)*Sin(thetaEta)-Cos(thetaEta))/Sqrt(6._dp)
DLdP = 1._dp/(4._dp*Sqrt(3._dp))*((3._dp*mPi**2-4._dp*mK**2) &
& *Sin(thetaEta)+2._dp*Sqrt(2._dp)*mK**2*Cos(thetaEta))
DRdP = - Conjg(DLdP)
DLuP = 1._dp/(4._dp*Sqrt(3._dp))*mPi**2*(Sin(thetaEta)+ &
& Sqrt(2._dp)*Cos(thetaEta))
DRuP = - Conjg(DLuP)
End If
!Leptons:
!1:e
!2:mu
Do i2=1,2
If (i2.eq.1) Then ! tau -> e P
out = 1
Elseif (i2.eq.2) Then ! tau -> mu P
out = 2
End if
! d-quark coefficients
BSLL = OllddSLL(3,out,1,1)
BSLR = OllddSLR(3,out,1,1)
BSRL = OllddSRL(3,out,1,1)
BSRR = OllddSRR(3,out,1,1)
BVLL = OllddVLL(3,out,1,1)
BVLR = OllddVLR(3,out,1,1)
BVRL = OllddVRL(3,out,1,1)
BVRR = OllddVRR(3,out,1,1)
! u-quark coefficients
CSLL = OlluuSLL(3,out,1,1)
CSLR = OlluuSLR(3,out,1,1)
CSRL = OlluuSRL(3,out,1,1)
CSRR = OlluuSRR(3,out,1,1)
CVLL = OlluuVLL(3,out,1,1)
CVLR = OlluuVLR(3,out,1,1)
CVRL = OlluuVRL(3,out,1,1)
CVRR = OlluuVRR(3,out,1,1)
! aP, bP scalar
aP(1) = Fpi/2._dp*(DLdP/mf_d(1)*(BSLL+BSRL) + DRdP/mf_d(1)*(BSLR+BSRR) &
& + DLuP/mf_u(1)*(CSLL+CSRL) + DRuP/mf_u(1)*(CSLR+CSRR))
bP(1) = Fpi/2._dp*(DLdP/mf_d(1)*(BSRL-BSLL) + DRdP/mf_d(1)*(BSRR-BSLR) &
& + DLuP/mf_u(1)*(CSRL-CSLL) + DRuP/mf_u(1)*(CSRR-CSLR))
! aP, bP vector
aP(2) = Fpi/4._dp*CP*(mf_l(3)-mf_l(out))*(-BVLL+BVLR-BVRL+BVRR+ &
& CVLL-CVLR+CVRL-CVRR)
bP(2) = Fpi/4._dp*CP*(mf_l(3)+mf_l(out))*(-BVLL+BVLR+BVRL-BVRR+ &
& CVLL-CVLR-CVRL+CVRR)
! averaged squared amplitude
meson_abs_T2=0._dp
Do k1=1,2
Do k2=1,2
cont=2._dp*mf_l(out)*mf_l(3)*(aP(k1)*conjg(aP(k2)) &
& -bP(k1)*conjg(bP(k2)))+ &
& (mf_l(3)**2+mf_l(out)**2-mP**2)*(aP(k1)*conjg(aP(k2))+ &
& bP(k1)*conjg(bP(k2)))
meson_abs_T2=meson_abs_T2+cont
End Do
End Do
meson_abs_T2=meson_abs_T2/(2._dp*mf_l(3))
! branching ratio
factor=oo4pi*Sqrt(lamb(mf_l(3)**2,mf_l(out)**2,mP**2)) &
& /(mf_l(3)**2*GammaTau)*0.5_dp
BR=factor*meson_abs_T2
If (i1.eq.1) Then !pi
If(i2.eq.1) Then
BrTautoEPi = BR
Else
BrTautoMuPi = BR
End If
Elseif (i1.eq.2) Then !eta
If(i2.eq.1) Then
BrTautoEEta = BR
Else
BrTautoMuEta = BR
End If
Else !eta'
If(i2.eq.1) Then
BrTautoEEtap = BR
Else
BrTautoMuEtap = BR
End If
End if
End Do
End Do
Contains
Real(dp) Function lamb(x,y,z)
Real(dp),Intent(in)::x,y,z
lamb=(x+y-z)**2-4._dp*x*y
End Function lamb
Higgs two-body decays (h → ℓαℓβ)
The decay width is given by
\Gamma \left( h \to \ell_\alpha \ell_\beta \right) \equiv \Gamma \left( h \to \ell_\alpha \bar \ell_\beta \right) + \Gamma \left( h \to \bar \ell_\alpha \ell_\beta \right) = \\ \frac{1}{16 \pi m_h} \left[ \left(1-\left(\frac{m_{\ell_\alpha} + m_{\ell_\beta}}{m_h}\right)^2\right)\left(1-\left(\frac{m_{\ell_\alpha} - m_{\ell_\beta}}{m_h}\right)^2\right)\right]^{1/2} \nonumber \\ \times \left[ \left( m_h^2 - m_{\ell_\alpha}^2 - m_{\ell_\beta}^2 \right) \left( |S_L|^2 + |S_R|^2 \right)_{\alpha \beta} - 4 m_{\ell_\alpha} m_{\ell_\beta} \text{Re}(S_L S_R^\ast)_{\alpha \beta} \right] \nonumber \\ + (\alpha \leftrightarrow \beta) \nonumber
NameProcess = "hLLp";
NameObservables = {{BrhtoMuE, 1101, "BR(h->e mu)"},
{BrhtoTauE, 1102, "BR(h->e tau)"},
{BrhtoTauMu, 1103, "BR(h->mu tau)"}};
NeededOperators = {OH2lSL, OH2lSR};
Body = "hLLp.f90";
Real(dp) :: width1, width2, width, mh, gamh, kinfactor
Complex(dp) :: SL1, SR1, SL2, SR2
Integer :: i1, gt1, gt2, hLoc
! ----------------------------------------------------------------
! h -> l l'
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on E. Arganda et al, PRD 71 (2005) 035011 [hep-ph/0407302]
! ----------------------------------------------------------------
!! NEXT LINE HAVE TO BE PARSED BY SARAH
! Checking if there are several generations of Scalars and what is the SM-like doublet
@ If[getGen[HiggsBoson]>1, "hLoc = MaxLoc(Abs("<>ToString[HiggsMixingMatrix]<>"(2,:)),1)", "hLoc = 1"]
@ "mh = "<>ToString[SPhenoMass[HiggsBoson]]<>If[getGen[HiggsBoson]>1, "(hLoc)", ""]
@ "gamh ="<>ToString[SPhenoWidth[HiggsBoson]]<>If[getGen[HiggsBoson]>1, "(hLoc)", ""]
If (.not.L_BR) gamh = 4.5E-3_dp ! Decays not calculated; using SM value
Do i1=1,3
If (i1.eq.1) Then ! h -> e mu
gt1 = 1
gt2 = 2
Elseif (i1.eq.2) Then ! h -> e tau
gt1 = 1
gt2 = 3
Else ! h -> mu tau
gt1 = 2
gt2 = 3
End if
! width = Gamma(h -> \bar{l1} l2) + Gamma(h -> l1 \bar{l2})
SL1 = OH2lSL(gt1,gt2,hLoc)
SR1 = OH2lSR(gt1,gt2,hLoc)
SL2 = OH2lSL(gt2,gt1,hLoc)
SR2 = OH2lSR(gt2,gt1,hLoc)
kinfactor = (1-(mf_l(gt1)+mf_l(gt2)/mh)**2)*&
& (1-(mf_l(gt1)-mf_l(gt2)/mh)**2)
width1 = (mh**2-mf_l(gt1)**2-mf_l(gt2)**2)*(Abs(SL1)**2+Abs(SR1)**2) &
& - 4._dp*mf_l(gt1)*mf_l(gt2)*Real(SL1*Conjg(SR1),dp)
width2 = (mh**2-mf_l(gt1)**2-mf_l(gt2)**2)*(Abs(SL2)**2+Abs(SR2)**2) &
& - 4._dp*mf_l(gt1)*mf_l(gt2)*Real(SL2*Conjg(SR2),dp)
! decay width
width = oo16pi/mh * sqrt(kinfactor) * (width1+width2)
If (i1.eq.1) Then
BrhtoMuE = width/(width+gamh)
Elseif (i1.eq.2) Then
BrhtoTauE = width/(width+gamh)
Else
BrhtoTauMu = width/(width+gamh)
End if
End do
Z two-body decays (Z → ℓαℓβ)
The decay width is given by
\Gamma \left( Z \to \ell_\alpha \ell_\beta \right) \equiv \Gamma \left( Z \to \ell_\alpha \bar \ell_\beta \right) + \Gamma \left( Z \to \bar \ell_\alpha \ell_\beta \right) = \\ \frac{m_Z}{48 \pi} \left[ 2 \left( |R_1^L|^2 + |R_1^R|^2 \right) + \frac{m_Z^2}{4} \left( |R_2^L|^2 + |R_2^R|^2 \right) \right] \, , \nonumber
where the charged lepton masses have been neglected.
NameProcess = "ZLLp";
NameObservables = {{BrZtoMuE, 1001, "BR(Z->e mu)"},
{BrZtoTauE, 1002, "BR(Z->e tau)"},
{BrZtoTauMu, 1003, "BR(Z->mu tau)"}};
NeededOperators = {OZ2lSL, OZ2lSR,OZ2lVL,OZ2lVR};
Body = "ZLLp.f90";
Real(dp) :: width
Integer :: i1, gt1, gt2
! ----------------------------------------------------------------
! Z -> l l'
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on X. -J. Bi et al, PRD 63 (2001) 096008 [hep-ph/0010270]
! ----------------------------------------------------------------
Do i1=1,3
If (i1.eq.1) Then ! Z -> e mu
gt1 = 1
gt2 = 2
Elseif (i1.eq.2) Then !Z -> e tau
gt1 = 1
gt2 = 3
Else ! Z -> mu tau
gt1 = 2
gt2 = 3
End if
! decay width
width = oo48pi*(2*(Abs(OZ2lVL(gt1,gt2))**2 + &
& Abs(OZ2lVR(gt1,gt2))**2)*mZ &
& + (Abs(OZ2lSL(gt1,gt2))**2+Abs(OZ2lSR(gt1,gt2))**2) &
& * mZ * mZ2 * 0.25_dp)
If (i1.eq.1) Then
BrZtoMuE = width/(width+gamZ)
Elseif (i1.eq.2) Then
BrZtoTauE = width/(width+gamZ)
Else
BrZtoTauMu = width/(width+gamZ)
End if
End do
Quark flavor observables
QFV has been observed and its description in the SM due to the CKM matrix is well established. However, the large majority of BSM models causes additional contributions which have to be studied carefully, see for instance Refs. .
We give also here a description of the implementation of the different observables using the operators present in the SPheno output of SARAH.
Neutral B-meson decays in charged leptons (Bs**,** d0 → ℓ+ℓ−)
Our analytical results for Bs, d0 → ℓ+ℓ− follow . The B0 ≡ Bs, d0 decay width to a pair of charged leptons can be written as
\Gamma \left(B^0 \to \ell_\alpha^+ \ell_\beta^- \right) = \frac{|\mathcal{M_{B\ell\ell}}|^2}{16 \pi M_{B}} \left[ \left(1-\left(\frac{m_{\ell_\alpha} + m_{\ell_\beta}}{m_B}\right)^2\right)\left(1-\left(\frac{m_{\ell_\alpha} - m_{\ell_\beta}}{m_B}\right)^2\right)\right]^{1/2} \, .
Here
|\mathcal{M_{B\ell\ell}}|^2 = 2 |F_S|^2 \left[ m_B^2 - \left(m_{\ell_\alpha} + m_{\ell_\beta}\right)^2 \right] + 2 |F_P|^2 \left[ m_B^2 - \left(m_{\ell_\alpha} - m_{\ell_\beta}\right)^2 \right] \nonumber \\ + 2 |F_V|^2 \left[ m_B^2 \left(m_{\ell_\alpha} - m_{\ell_\beta}\right)^2 - \left(m_{\ell_\alpha}^2 - m_{\ell_\beta}^2\right)^2 \right] \nonumber \\ + 2 |F_A|^2 \left[ m_B^2 \left(m_{\ell_\alpha} + m_{\ell_\beta}\right)^2 - \left(m_{\ell_\alpha}^2 - m_{\ell_\beta}^2\right)^2 \right] \nonumber \\ + 4 \, \text{Re}(F_S F_V^\ast) \left(m_{\ell_\alpha} - m_{\ell_\beta}\right) \left[ m_B^2 + \left(m_{\ell_\alpha} + m_{\ell_\beta}\right)^2 \right] \nonumber \\ + 4 \, \text{Re}(F_P F_A^\ast) \left(m_{\ell_\alpha} + m_{\ell_\beta}\right) \left[ m_B^2 - \left(m_{\ell_\alpha} - m_{\ell_\beta}\right)^2 \right] \, ,
and the FX coefficients are defined in terms of our Wilson coefficients as[1]
F_S = \frac{i}{4} \frac{m_B^2 f_B}{m_d + m_{d^\prime}} \left( E_{LL}^S + E_{LR}^S - E_{RR}^S - E_{RL}^S \right) \\ F_P = \frac{i}{4} \frac{m_B^2 f_B}{m_d + m_{d^\prime}} \left( - E_{LL}^S + E_{LR}^S - E_{RR}^S + E_{RL}^S \right) \\ F_V = - \frac{i}{4} f_B \left( E_{LL}^V + E_{LR}^V - E_{RR}^V - E_{RL}^V \right) \\ F_A = - \frac{i}{4} f_B \left( - E_{LL}^V + E_{LR}^V - E_{RR}^V + E_{RL}^V \right) \, ,
where fB ≡ fBd, s0 is the Bd, s0 decay constant and md, d′ are the masses of the quarks contained in the B meson, Bd0 ≡ b̄**d and Bs0 ≡ b̄**s. In the lepton flavor conserving case, α = β, the FV contribution vanishes. In this case, the results in are in agreement with previous computations .
NameProcess = "B0toLL";
NameObservables = {{BrB0dEE, 4000, "BR(B^0_d->e e)"},
{ratioB0dEE, 4001, "BR(B^0_d->e e)/BR(B^0_d->e e)_SM"},
{BrB0sEE, 4002, "BR(B^0_s->e e)"},
{ratioB0sEE, 4003, "BR(B^0_s->e e)/BR(B^0_s->e e)_SM"},
{BrB0dMuMu, 4004, "BR(B^0_d->mu mu)"},
{ratioB0dMuMu, 4005, "BR(B^0_d->mu mu)/BR(B^0_d->mu mu)_SM"},
{BrB0sMuMu, 4006, "BR(B^0_s->mu mu)"},
{ratioB0sMuMu, 4007, "BR(B^0_s->mu mu)/BR(B^0_s->mu mu)_SM"},
{BrB0dTauTau, 4008, "BR(B^0_d->tau tau)"},
{ratioB0dTauTau, 4009, "BR(B^0_d->tau tau)/BR(B^0_d->tau tau)_SM"},
{BrB0sTauTau, 4010, "BR(B^0_s->tau tau)"},
{ratioB0sTauTau, 4011, "BR(B^0_s->tau tau)/BR(B^0_s->tau tau)_SM"} };
NeededOperators = {OddllSLL, OddllSRR, OddllSRL, OddllSLR,
OddllVRR, OddllVLL, OddllVRL, OddllVLR,
OddllSLLSM, OddllSRRSM, OddllSRLSM, OddllSLRSM,
OddllVRRSM, OddllVLLSM, OddllVRLSM, OddllVLRSM};
Body = "B0ll.f90";
Real(dp) :: AmpSquared,AmpSquared2, AmpSquared_SM, AmpSquared2_SM, &
& width_SM, width
Real(dp) :: MassB0s, MassB0d, fBs, fBd, TauB0s, TauB0d
Real(dp) :: hbar=6.58211899E-25_dp
Real(dp) :: MassB0,MassB02,fB0,GammaB0
Complex(dp) :: CS(4), CV(4), CT(4)
Complex(dp) :: FS=0._dp, FP=0._dp, FV=0._dp, FA=0._dp
Integer :: i1, gt1, gt2, gt3, gt4
! ----------------------------------------------------------------
! B0 -> l l
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on A. Dedes et al, PRD 79 (2009) 055006 [arXiv:0812.4320]
! ----------------------------------------------------------------
! Using global hadronic data
fBd = f_B0d_CONST
fBs = f_B0s_CONST
TauB0d = tau_B0d
TauB0s = tau_B0s
MassB0d = mass_B0d
MassB0s = mass_B0s
Do i1=1,6
gt1 = 3
If (i1.eq.1) Then ! B0d -> e+ e-
MassB0 = MassB0d
MassB02 = MassB0d**2
fB0 = fBd
GammaB0 = (hbar)/(TauB0d)
gt2 = 1
gt3 = 1
gt4 = 1
Else if (i1.eq.2) Then ! B0s -> e+ e-
MassB0 = MassB0s
MassB02 = MassB0s**2
fB0 = fBs
GammaB0 = (hbar)/(TauB0s)
gt2 = 2
gt3 = 1
gt4 = 1
Else if (i1.eq.3) Then ! B0d -> mu+ mu-
MassB0 = MassB0d
MassB02 = MassB0d**2
fB0 = fBd
GammaB0 = (hbar)/(TauB0d)
gt2 = 1
gt3 = 2
gt4 = 2
Else if (i1.eq.4) Then ! B0s -> mu+ mu-
MassB0 = MassB0s
MassB02 = MassB0s**2
fB0 = fBs
GammaB0 = (hbar)/(TauB0s)
gt2 = 2
gt3 = 2
gt4 = 2
Else if (i1.eq.5) Then ! B0d -> tau+ tau-
MassB0 = MassB0d
MassB02 = MassB0d**2
fB0 = fBd
GammaB0 = (hbar)/(TauB0d)
gt2 = 1
gt3 = 3
gt4 = 3
Else if (i1.eq.6) Then ! B0s -> tau+ tau-
MassB0 = MassB0s
MassB02 = MassB0s**2
fB0 = fBs
GammaB0 = (hbar)/(TauB0s)
gt2 = 2
gt3 = 3
gt4 = 3
End if
! BSM contributions
CS(1) = OddllSRR(gt1,gt2,gt3,gt4)
CS(2) = OddllSRL(gt1,gt2,gt3,gt4)
CS(3) = OddllSLL(gt1,gt2,gt3,gt4)
CS(4) = OddllSLR(gt1,gt2,gt3,gt4)
CV(1) = OddllVLL(gt1,gt2,gt3,gt4)
CV(2) = OddllVLR(gt1,gt2,gt3,gt4)
CV(3) = OddllVRR(gt1,gt2,gt3,gt4)
CV(4) = OddllVRL(gt1,gt2,gt3,gt4)
FS= 0.25_dp*MassB02*fB0/(MFd(gt1)+MFd(gt2))*( CS(1)+CS(2)-CS(3)-CS(4))
FP= 0.25_dp*MassB02*fB0/(MFd(gt1)+MFd(gt2))*(-CS(1)+CS(2)-CS(3)+CS(4))
FV= -0.25_dp*fB0*( CV(1)+CV(2)-CV(3)-CV(4))
FA= -0.25_dp*fB0*(-CV(1)+CV(2)-CV(3)+CV(4))
AmpSquared = 2 * abs(FS)**2 * (MassB02 - (mf_l(gt3)+mf_l(gt4))**2) &
& + 2 *abs(FP)**2 * (MassB02 - (mf_l(gt3)-mf_l(gt4))**2) &
& + 2 *abs(FV)**2 * (MassB02*(mf_l(gt4)-mf_l(gt3))**2 &
& - (mf_l2(gt4)-mf_l2(gt3))**2) &
& + 2 *abs(FA)**2 * (MassB02*(mf_l(gt4)+mf_l(gt3))**2 - &
& (mf_l2(gt4)-mf_l2(gt3))**2) &
& + 4 *REAL(FS*conjg(FV)) *(mf_l(gt3)-mf_l(gt4)) *(MassB02 &
& + (mf_l(gt3)+mf_l(gt4))**2) &
& + 4 *REAL(FP*conjg(FA)) *(mf_l(gt3)+mf_l(gt4)) *(MassB02 &
& - (mf_l(gt3)-mf_l(gt4))**2)
width = oo16pi * AmpSquared / MassB0 * &
& sqrt(1-((mf_l(gt4)+mf_l(gt3))/MassB0)**2) &
& * sqrt(1-((mf_l(gt4)-mf_l(gt3))/MassB0)**2)*(Alpha/Alpha_160)**4
! SM contributions
CS(1) = OddllSRRSM(gt1,gt2,gt3,gt4)
CS(2) = OddllSRLSM(gt1,gt2,gt3,gt4)
CS(3) = OddllSLLSM(gt1,gt2,gt3,gt4)
CS(4) = OddllSLRSM(gt1,gt2,gt3,gt4)
CV(1) = OddllVLLSM(gt1,gt2,gt3,gt4)
CV(2) = OddllVLRSM(gt1,gt2,gt3,gt4)
CV(3) = OddllVRRSM(gt1,gt2,gt3,gt4)
CV(4) = OddllVRLSM(gt1,gt2,gt3,gt4)
FS= 0.25_dp*MassB02*fB0/(MFd(gt1)+MFd(gt2))*( CS(1)+CS(2)-CS(3)-CS(4))
FP= 0.25_dp*MassB02*fB0/(MFd(gt1)+MFd(gt2))*(-CS(1)+CS(2)-CS(3)+CS(4))
FV= -0.25_dp*fB0*( CV(1)+CV(2)-CV(3)-CV(4))
FA= -0.25_dp*fB0*(-CV(1)+CV(2)-CV(3)+CV(4))
AmpSquared = 2 * abs(FS)**2 * (MassB02 - (mf_l(gt3)+mf_l(gt4))**2) &
& + 2 *abs(FP)**2 * (MassB02 - (mf_l(gt3)-mf_l(gt4))**2) &
& + 2 *abs(FV)**2 * (MassB02*(mf_l(gt4)-mf_l(gt3))**2 - &
& (mf_l2(gt4)-mf_l2(gt3))**2) &
& + 2 *abs(FA)**2 * (MassB02*(mf_l(gt4)+mf_l(gt3))**2 - &
& (mf_l2(gt4)-mf_l2(gt3))**2) &
& + 4 *REAL(FS*conjg(FV)) *(mf_l(gt3)-mf_l(gt4)) *(MassB02 &
& + (mf_l(gt3)+mf_l(gt4))**2) &
& + 4 *REAL(FP*conjg(FA)) *(mf_l(gt3)+mf_l(gt4)) *(MassB02 &
& - (mf_l(gt3)-mf_l(gt4))**2)
width_SM = oo16pi * AmpSquared / MassB0 * sqrt(1-((mf_l(gt4)+ &
& mf_l(gt3))/MassB0)**2) &
& * sqrt(1-((mf_l(gt4)-mf_l(gt3))/MassB0)**2)*(Alpha/Alpha_160)**4
If (i1.Eq.1) Then
BrB0dEE= width / GammaB0
ratioB0dEE= width / width_SM
Else If (i1.Eq.2) Then
BrB0sEE= width / GammaB0
ratioB0sEE= width / width_SM
Else If (i1.Eq.3) Then
BrB0dMuMu= width / GammaB0
ratioB0dMuMu= width / width_SM
Else If (i1.Eq.4) Then
BrB0sMuMu= width / GammaB0
ratioB0sMuMu= width / width_SM
Else If (i1.Eq.5) Then
BrB0dTauTau= width / GammaB0
ratioB0dTauTau= width / width_SM
Else If (i1.Eq.6) Then
BrB0sTauTau= width / GammaB0
ratioB0sTauTau= width / width_SM
End If
End do
Radiative B-meson decay (B̄ → Xsγ)
The branching ratio for B̄ → Xsγ, with a cut Eγ > 1.6 GeV in the B̄ rest frame, can be obtained as
\BR \hspace\*{-0.1cm} \left( \bar B \to X_s \gamma \right)_{E_\gamma gt; 1.6 \text{GeV}} = 10^{-4} \bigg\[ a_{SM} + a_{77} \left( |\delta C_7^{(0)}|^2 + |\delta C_7^{\prime (0)}|^2 \right) + a_{88} \left( |\delta C_8^{(0)}|^2 + |\delta C_8^{\prime (0)}|^2 \right) \nonumber \\ + \text{Re} \left( a_7 \, \delta C_7^{(0)} + a_8 \, \delta C_8^{(0)} + a_{78} \left( \delta C_7^{(0)} \, \delta C_8^{(0) \ast} + \delta C_7^{\prime (0)} \, \delta C_8^{\prime (0) \, \ast} \right) \right) \bigg\] \, ,
where aS**M = 3.15 is the NNLO SM prediction , the other a coefficients in Eq. are found to be
a_{77} = 4.743 \nonumber \\ a_{88} = 0.789 \nonumber \\ a_7 = -7.184 + 0.612 \, i \nonumber \\ a_8 = -2.225 - 0.557 \, i \nonumber \\ a_{78} = 2.454 - 0.884 \, i
and we have defined δ**Ci(0) = Ci(0) − Ci(0) SM. Finally, the Ci(0) coefficients can be written in terms of Q1, 2L, R in Eqs. and as
C_7^{(0)} = n_{CQ} \, Q_1^R \\ C_7^{\prime (0)} = n_{CQ} \, Q_1^L \\ C_8^{(0)} = n_{CQ} \, Q_2^R \\ C_8^{\prime (0)} = n_{CQ} \, Q_2^L
where n_{CQ}^{-1} = - \frac{G_F}{4 \sqrt{2} \pi^2} V_{tb} V_{ts}^\ast
and V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
NameProcess = "bsGamma";
NameObservables = {{BrBsGamma, 200, "BR(B->X_s gamma)"},
{ratioBsGamma, 201, "BR(B->X_s gamma)/BR(B->X_s gamma)_SM"}};
NeededOperators = {CC7, CC7p, CC8, CC8p,
CC7SM, CC7pSM, CC8SM, CC8pSM};
Body = "bsGamma.f90";
Integer :: gt1, gt2
Complex(dp) :: norm, delta_C7_0, delta_C7p_0, delta_C8_0, delta_C8p_0
Real(dp) :: NNLO_SM
! ----------------------------------------------------------------
! \bar{B} -> X_s gamma (Egamma > 1.6 GeV)
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on E. Lunghi, J. Matias, JHEP 0704 (2007) 058 [hep-ph/0612166]
! ----------------------------------------------------------------
gt1=3 !b
gt2=2 !s
! normalization of our Wilson coefficients
! relative to the ones used in hep-ph/0612166
norm = -CKM_160(3,3)*Conjg(CKM_160(gt1,gt2))*Alpha_160/ &
& (8._dp*Pi*sinW2_160*mW2)
! Wilson coefficients
delta_C7_0 =(CC7(gt1,gt2)-CC7SM(gt1,gt2))/norm
delta_C7p_0=(CC7p(gt1,gt2)-CC7pSM(gt1,gt2))/norm
delta_C8_0 =(CC8(gt1,gt2)-CC8SM(gt1,gt2))/norm
delta_C8p_0=(CC8p(gt1,gt2)-CC8pSM(gt1,gt2))/norm
! NNLO SM prediction
! as obtained in M. Misiak et al, PRL 98 (2007) 022002
! and M. Misiak and M. Steinhauser, NPB 764 (2007) 62
NNLO_SM=3.15_dp
BrBsGamma=NNLO_SM+4.743_dp*(Abs(delta_C7_0)**2+Abs(delta_C7p_0)**2)&
&+0.789_dp*(Abs(delta_C8_0)**2+Abs(delta_C8p_0)**2)&
&+Real((-7.184_dp,0.612_dp)*delta_C7_0&
&+(-2.225_dp,-0.557_dp)*delta_C8_0+(2.454_dp,-0.884_dp)*&
&(delta_C7_0*conjg(delta_C8_0)+delta_C7p_0*conjg(delta_C8p_0)),dp)
! ratio BSM/SM
ratioBsGamma = BrBsGamma/NNLO_SM
! branching ratio
BrBsGamma=1E-4_dp*BrBsGamma
B-meson decay into a S-meson and two charged leptons (B̄ → Xsℓ+ℓ−)
Our results for B̄ → Xsℓ+ℓ− are based on , expanded with the addition of prime operators contributions . The branching ratios for the ℓ = e case can be written as
10^7 \, BR \left( \bar B \to X_s e^+ e^- \right) = 2.3148 - 0.001658 Im (R_{10}) + 0.0005 Im(R_{10} R_8^\ast + R_{10}^\prime R_8^{\prime \, \ast}) \nonumber \\ + 0.0523 Im(R_7) + 0.02266 Im(R_7 R_8^\ast + R_7^\prime R_8^{\prime \, \ast}) + 0.00496 Im(R_7 R_9^\ast + R_7^\prime R_9^{\prime \, \ast}) \nonumber \\ + 0.00518 Im(R_8) + 0.0261 Im(R_8 R_9^\ast + R_8^\prime R_9^{\prime \, \ast}) - 0.00621 Im(R_9) - 0.5420 Re(R_{10}) \nonumber \\ - 0.03340 Re(R_7) + 0.0153 Re(R_7 R_{10}^\ast + R_7^\prime R_{10}^{\prime \, \ast}) + 0.0673 Re(R_7 R_8^\ast + R_7^\prime R_8^{\prime \, \ast}) \nonumber \\ - 0.86916 Re(R_7 R_9^\ast + R_7^\prime R_9^{\prime \, \ast}) - 0.0135 Re(R_8) + 0.00185 Re(R_8 R_{10} + R_8^\prime R_{10}^{\prime \, \ast}) \nonumber \\ - 0.09921 Re(R_8 R_9^\ast + R_8^\prime R_9^{\prime \, \ast}) + 2.833 Re(R_9) - 0.10698 Re(R_9 R_{10}^\ast + R_9^\prime R_{10}^{\prime \, \ast}) \nonumber \\ + 11.0348 \left( |R_{10}|^2 + |R_{10}^\prime|^2 \right) + 0.2804 \left( |R_7|^2 + |R_7^\prime|^2 \right) \nonumber \\ + 0.003763 \left( |R_8|^2 + |R_8^\prime|^2 \right) + 1.527 \left( |R_9|^2 + |R_9^\prime|^2 \right) \, ,
whereas for the ℓ = μ case one gets
10^7 \, BR \left( \bar B \to X_s \mu^+ \mu^- \right) = 2.1774 - 0.001658 Im (R_{10}) + 0.0005 Im(R_{10} R_8^\ast + R_{10}^\prime R_8^{\prime \, \ast}) \nonumber \\ + 0.0534 Im(R_7) + 0.02266 Im(R_7 R_8^\ast + R_7^\prime R_8^{\prime \, \ast}) + 0.00496 Im(R_7 R_9^\ast + R_7^\prime R_9^{\prime \, \ast}) \nonumber \\ + 0.00527 Im(R_8) + 0.0261 Im(R_8 R_9^\ast + R_8^\prime R_9^{\prime \, \ast}) - 0.0115 Im(R_9) - 0.5420 Re(R_{10}) \nonumber \\ + 0.0208 Re(R_7) + 0.0153 Re(R_7 R_{10}^\ast + R_7^\prime R_{10}^{\prime \, \ast}) + 0.0648 Re(R_7 R_8^\ast + R_7^\prime R_8^{\prime \, \ast}) \nonumber \\ - 0.8545 Re(R_7 R_9^\ast + R_7^\prime R_9^{\prime \, \ast}) - 0.00938 Re(R_8) + 0.00185 Re(R_8 R_{10} + R_8^\prime R_{10}^{\prime \, \ast}) \nonumber \\ - 0.0981 Re(R_8 R_9^\ast + R_8^\prime R_9^{\prime \, \ast}) + 2.6917 Re(R_9) - 0.10698 Re(R_9 R_{10}^\ast + R_9^\prime R_{10}^{\prime \, \ast}) \nonumber \\ + 10.7652 \left( |R_{10}|^2 + |R_{10}^\prime|^2 \right) + 0.2880 \left( |R_7|^2 + |R_7^\prime|^2 \right) \nonumber \\ + 0.003763 \left( |R_8|^2 + |R_8^\prime|^2 \right) + 1.527 \left( |R_9|^2 + |R_9^\prime|^2 \right) \, .
Here we have defined the ratios of Wilson coefficients
R_{7,8} = \frac{Q_{1,2}^R}{Q_{1,2}^{R, \text{SM}}} \qquad , \qquad R_{7,8}^\prime = \frac{Q_{1,2}^L}{Q_{1,2}^{L, \text{SM}}}
as well as
R_{9,10} = \frac{E_{LL}^V \pm E_{LR}^V}{E_{LL}^{V, \text{SM}} \pm E_{LR}^{V, \text{SM}}} \qquad , \qquad R_{9,10}^\prime = \frac{E_{RR}^V \pm E_{RL}^V}{E_{RR}^{V, \text{SM}} \pm E_{RL}^{V, \text{SM}}} \, .
NameProcess = "BtoSLL";
NameObservables = {{BrBtoSEE, 5000, "BR(B-> s e e)"},
{ratioBtoSEE, 5001, "BR(B-> s e e)/BR(B-> s e e)_SM"},
{BrBtoSMuMu, 5002, "BR(B-> s mu mu)"} ,
{ratioBtoSMuMu, 5003, "BR(B-> s mu mu)/BR(B-> s mu mu)_SM"}};
NeededOperators = {OddllVRR, OddllVLL, OddllVRL, OddllVLR,
CC7, CC7p, CC8, CC8p,
OddllVRRSM, OddllVLLSM, OddllVRLSM, OddllVLRSM,
CC7SM, CC7pSM, CC8SM, CC8pSM
};
Body = "BtoSLL.f90";
Complex(dp) :: c7(2), c7p(2), c8(2), c8p(2), r7, r7p, r8, r8p, norm, &
& r9(2), r9p(2), r10(2), r10p(2), &
& c9ee(2), c9pee(2), c10ee(2), c10pee(2), &
& c9_cee(2), c9p_cee(2), c10_cee(2), c10p_cee(2), &
& c9mm(2), c9pmm(2), c10mm(2), c10pmm(2), c9_cmm(2), &
& c9p_cmm(2), c10_cmm(2), c10p_cmm(2)
! ----------------------------------------------------------------
! \bar{B} -> X_s l+ l-
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on T. Huber et al, NPB 740 (2006) 105, [hep-ph/0512066]
! Prime operators added after private communication with E. Lunghi
! ----------------------------------------------------------------
! Wilson coefficients
c7(1) = CC7(3,2)
c7(2) = CC7SM(3,2)
c7p(1) = CC7p(3,2)
c7p(2) = CC7pSM(3,2)
c8(1) = CC8(3,2)
c8(2) = CC8SM(3,2)
c8p(1) = CC8p(3,2)
c8p(2) = CC8pSM(3,2)
c9ee(1) = OddllVLL(3,2,1,1)+OddllVLR(3,2,1,1)
c9ee(2) = (OddllVLLSM(3,2,1,1)+OddllVLRSM(3,2,1,1))
c9mm(1) = OddllVLL(3,2,2,2)+OddllVLR(3,2,2,2)
c9mm(2) = (OddllVLLSM(3,2,2,2)+OddllVLRSM(3,2,2,2))
c9pee(1) = OddllVRR(3,2,1,1)+OddllVRL(3,2,1,1)
c9pee(2) = (OddllVRRSM(3,2,1,1)+OddllVRLSM(3,2,1,1))
c9pmm(1) = OddllVRR(3,2,2,2)+OddllVRL(3,2,2,2)
c9pmm(2) = (OddllVRRSM(3,2,2,2)+OddllVRLSM(3,2,2,2))
c10ee(1) = OddllVLL(3,2,1,1)-OddllVLR(3,2,1,1)
c10ee(2) = (OddllVLLSM(3,2,1,1)-OddllVLRSM(3,2,1,1))
c10mm(1) = OddllVLL(3,2,2,2)-OddllVLR(3,2,2,2)
c10mm(2) = (OddllVLLSM(3,2,2,2)-OddllVLRSM(3,2,2,2))
c10pee(1) = OddllVRR(3,2,1,1)-OddllVRL(3,2,1,1)
c10pee(2) = (OddllVRRSM(3,2,1,1)-OddllVRLSM(3,2,1,1))
c10pmm(1) = OddllVRR(3,2,2,2)-OddllVRL(3,2,2,2)
c10pmm(2) = (OddllVRRSM(3,2,2,2)-OddllVRLSM(3,2,2,2))
! ratios
r7 = c7(1) / c7(2)
r7p = c7p(1) / c7(2)
r8 = c8(1) / c8(2)
r8p = c8p(1) / c8(2)
r9(1) = c9ee(1)/c9ee(2)
r9(2) = c9mm(1)/c9mm(2)
r9p(1) = c9pee(1)/c9ee(2)
r9p(2) = c9pmm(1)/c9mm(2)
r10(1) = c10ee(1)/c10ee(2)
r10(2) = c10mm(1)/c10mm(2)
r10p(1) = c10pee(1)/c10ee(2)
r10p(2) = c10pmm(1)/c10mm(2)
BrBtoSEE = (2.3148_dp - 1.658e-3_dp * Aimag(R10(1)) &
& + 5.e-4_dp * Aimag(r10(1)*Conjg(r8) + r10p(1)*Conjg(r8p) ) &
& + 5.23e-2_dp * Aimag(r7) + 5.18e-3_dp * Aimag(r8) &
& + 2.266e-2_dp * Aimag(r7 * Conjg(r8) + r7p * Conjg(r8p) ) &
& + 4.96e-3_dp * Aimag(r7 * Conjg(r9(1)) + r7p * Conjg(r9p(1)) ) &
& + 2.61e-2_dp * Aimag(r8 * Conjg(r9(1)) + r8p * Conjg(r9p(1)) ) &
& - 6.21e-3_dp * Aimag(r9(1)) - 0.5420_dp * Real( r10(1), dp) &
& - 3.340e-2_dp * Real(r7,dp) - 1.35e-2_dp * Real(r8,dp) &
& + 1.53e-2_dp * Real(r7*Conjg(r10(1)) + r7p*Conjg(r10p(1)), dp ) &
& + 6.73e-2_dp * Real(r7 * Conjg(r8) + r7p * Conjg(r8p), dp ) &
& - 0.86916_dp * Real(r7*Conjg(r9(1)) + r7p*Conjg(r9p(1)), dp ) &
& + 1.85e-3_dp * Real(r8*Conjg(r10(1)) + r8p*Conjg(r10p(1)), dp ) &
& - 9.921e-2_dp * Real(r8*Conjg(r9(1)) + r8p*Conjg(r9p(1)), dp ) &
& + 2.833_dp* Real(r9(1),dp) + 0.2804_dp * (Abs(r7)**2 + Abs(r7p)**2)&
& - 0.10698_dp * Real( r9(1) * Conjg(r10(1)) &
& + r9p(1) * Conjg(r10p(1)), dp) &
& + 11.0348_dp * (Abs(r10(1))**2 + Abs(r10p(1))**2 ) &
& + 1.527_dp * (Abs(r9(1))**2 + Abs(r9p(1))**2 ) &
& + 3.763e-3_dp * (Abs(r8)**2 + Abs(r8p)**2 ) )
! ratio BR(B -> Xs mu+ mu-)/BR(B -> Xs e+ e-)_SM
ratioBtoSee = BrBtoSEE/16.5529_dp
! branching ratio B -> Xs e+ e-
BrBtoSEE = BrBtoSEE* 1.e-7_dp
BrBtoSMuMu = (2.1774_dp - 1.658e-3_dp * Aimag(R10(2)) &
& + 5.e-4_dp * Aimag(r10(2)*Conjg(r8) + r10p(2)*Conjg(r8p) ) &
& + 5.34e-2_dp * Aimag(r7) + 5.27e-3_dp * Aimag(r8) &
& + 2.266e-2_dp * Aimag(r7 * Conjg(r8) + r7p * Conjg(r8p) ) &
& + 4.96e-3_dp * Aimag(r7 * Conjg(r9(2)) + r7p * Conjg(r9p(2)) ) &
& + 2.61e-2_dp * Aimag(r8 * Conjg(r9(2)) + r8p * Conjg(r9p(2)) ) &
& - 1.15e-2_dp * Aimag(r9(2)) - 0.5420_dp * Real( r10(2), dp) &
& + 2.08e-2_dp * Real(r7,dp) - 9.38e-3_dp * Real(r8,dp) &
& + 1.53e-2_dp * Real(r7*Conjg(r10(2)) + r7p*Conjg(r10p(2)), dp ) &
& + 6.848e-2_dp * Real(r7 * Conjg(r8) + r7p * Conjg(r8p), dp ) &
& - 0.8545_dp * Real(r7*Conjg(r9(2)) + r7p*Conjg(r9p(2)), dp ) &
& + 1.85e-3_dp * Real(r8*Conjg(r10(2)) + r8p*Conjg(r10p(2)), dp ) &
& - 9.81e-2_dp * Real(r8*Conjg(r9(2)) + r8p*Conjg(r9p(2)), dp ) &
& + 2.6917_dp * Real(r9(2),dp) + 0.2880_dp*(Abs(r7)**2+Abs(r7p)**2) &
& - 0.10698_dp * Real( r9(2) * Conjg(r10(2)) &
& + r9p(2) * Conjg(r10p(2)), dp) &
& + 10.7652_dp * (Abs(r10(2))**2 + Abs(r10p(2))**2 ) &
& + 1.4884_dp * (Abs(r9(2))**2 + Abs(r9p(2))**2 ) &
& + 3.81e-3_dp * (Abs(r8)**2 + Abs(r8p)**2 ) )
! ratio BR(B -> Xs mu+ mu-)/BR(B -> Xs mu+ mu-)_SM
ratioBtoSMuMu = BrBtoSMuMu/16.0479_dp
! branching ratio B -> Xs mu+ mu-
BrBtoSMuMu = BrBtoSMuMu* 1.e-7_dp
Charged B-meson decay into charged Kaons and two charged leptons (B+ → K+ℓ+ℓ−)
Our results for B+ → K+ℓ+ℓ− are based on the expressions given in . The branching ratio for B+ → K+μ+μ− in the high-q2 region, q2 being the dilepton invariant mass squared, can be written as
\BR \left( B^+ \to K^+ \mu^+ \mu^- \right)_{q^2 \in \[14.18,22\] \text{GeV}^2} \simeq 1.11 + 0.22 \left( C_7^{\text{NP}} + C_7^\prime \right) + 0.27 \left( C_9^{\text{NP}} + C_9^\prime \right) - 0.27 \left( C_{10}^{\text{NP}} + C_{10}^\prime \right) \, .
The coefficients in Eq. can be related to the ones in our generic Lagrangian as
C_7^{\text{NP}} = n_{CQ} \, \left( Q_1^R - Q_1^{R,\text{SM}} \right) \\ C_7^\prime = n_{CQ} \, Q_1^L \\ C_9^{\text{NP}} = n_{CQ} \, \left[ \left( E_{LL}^V + E_{LR}^V \right) - \left( E_{LL}^{V,\text{SM}} + E_{LR}^{V,\text{SM}} \right) \right] \\ C_9^\prime = n_{CQ} \, \left( E_{RR}^V + E_{RL}^V \right) \\ C_{10}^{\text{NP}} = n_{CQ} \, \left[ \left( E_{LL}^V - E_{LR}^V \right) - \left( E_{LL}^{V,\text{SM}} - E_{LR}^{V,\text{SM}} \right) \right] \\ C_{10}^\prime = n_{CQ} \, \left( E_{RR}^V - E_{RL}^V \right)
where the normalization factor nC**Q was already defined after Eq. .
NameProcess = "BtoKLL";
NameObservables = {{BrBtoKmumu, 6000, "BR(B -> K mu mu)"},
{ratioBtoKmumu, 6001, "BR(B -> K mu mu)/BR(B -> K mu mu)_SM"}};
NeededOperators = {OddllVRR, OddllVLL, OddllVRL, OddllVLR, CC7, CC7p,
OddllVRRSM, OddllVLLSM, OddllVRLSM, OddllVLRSM, CC7SM, CC7pSM
};
Body = "BtoKLL.f90";
Complex(dp) :: c7NP, c7p, c9NP, c9p, c10NP, c10p, norm
Real(dp) :: GF
! ----------------------------------------------------------------
! B^+ -> K^+ l+ l- (14.18 GeV^2 < q^2 < 22 GeV^2)
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on W. Altmannshofer, D. M. Straub, EPJ C 73 (2013) 2646
! [arXiv:1308.1501]
! ----------------------------------------------------------------
c7NP = (CC7(3,2) - CC7SM(3,2))
c7p = CC7p(3,2)
c9NP = (OddllVLL(3,2,1,1)+OddllVLR(3,2,1,1) - &
& (OddllVLLSM(3,2,1,1)+OddllVLRSM(3,2,1,1)))
c9p = (OddllVRR(3,2,1,1)+OddllVRL(3,2,1,1))
c10NP = (OddllVLL(3,2,1,1)-OddllVLR(3,2,1,1) - &
& (OddllVLLSM(3,2,1,1)-OddllVLRSM(3,2,1,1)))
c10p = (OddllVRR(3,2,1,1)-OddllVRL(3,2,1,1))
! running GF
GF = (Alpha_160*4._dp*Pi/sinW2_160)/mw**2*sqrt2/8._dp
! normalization of our Wilson coefficients
! relative to the ones used in arXiv:1308.1501
norm = - oo16pi2*4._dp*GF/sqrt2*CKM_160(3,3)*Conjg(CKM_160(3,2))
! Branching ratio in the high-q^2 region
! q^2 in [14.18,22] GeV^2
BrBtoKmumu = (1.11_dp + 0.22_dp*(c7Np+c7p)/norm + &
& 0.27_dp*(c9NP+c9p)/norm - 0.27_dp*(c10NP+c10p)/norm)
! ratio relative to SM
ratioBtoKmumu = BrBtoKmumu/1.11_dp
! total BR
BrBtoKmumu = BrBtoKmumu*1.0E-7_dp
B-meson decays into neutrino pairs (B̄ → Xd**,** sν****ν̄)
The branching ratio for B̄ → Xqν**ν̄, with q = d, s, is given by
\BR \left( \bar B \to X_q \nu \bar \nu \right) = \frac{\alpha^2}{4 \pi^2 \sin^4 \theta_W} \frac{|V_{tb} V_{tq}^\ast|^2}{|V_{cb}|^2} \frac{\BR \left( \bar B \to X_c e \bar \nu_e \right) \kappa(0)}{f(\hat m_c) \kappa(\hat m_c)} \\ \times \sum_f \left[ \left( |c_L|^2 + |c_R|^2 \right) f(\hat m_q) - 4 \RE \left(c_L c_R^\ast \right) \hat m_q \tilde f(\hat m_q) \right] \nonumber \, .
The sum runs over the three neutrinos and m̂i ≡ mi/mb. The functions f(m̂c) and κ(m̂c) represent the phase-space and the 1-loop QCD corrections, respectively. In case of κ(m̂c), one needs the numerical values κ(0)=0.83 and κ(m̂c)=0.88. The functions f(x) and f̃(x) take the form
f(x) = 1 - 8x^2 + 8 x^6-x^8 -24 x^4 \log x \\ \tilde f(x) = 1 + 9x^2 - 9x^4-x^6+12x^2(1+x^2)\log x \, .
Finally, \BR \left( \bar B \to X_c e \bar \nu_e \right)_{\text{exp}} = 0.101
and the coefficients cL and cR are given by
c_L = n^q_{BX \nu\nu} \, F_{LL}^V \\ c_R = n^q_{BX \nu\nu} \, F_{RL}^V \, ,
where \left(n^q_{BX \nu\nu}\right)^{-1} = \frac{4 G_F}{\sqrt{2}} \frac{\alpha}{2 \pi \sin^2 \theta_W} V_{tb}^\ast V_{tq}
is the relative factor between our Wilson coefficients and the ones in .
NameProcess = "BtoQnunu";
NameObservables = {{BrBtoSnunu, 7000, "BR(B->s nu nu)"},
{ratioBtoSnunu, 7001, "BR(B->s nu nu)/BR(B->s nu nu)_SM"},
{BrBtoDnunu, 7002, "BR(B->D nu nu)"},
{ratioBtoDnunu, 7003, "BR(B->D nu nu)/BR(B->D nu nu)_SM"}};
NeededOperators = {OddvvVRR, OddvvVLL, OddvvVRL, OddvvVLR,
OddvvVRRSM, OddvvVLLSM, OddvvVRLSM, OddvvVLRSM};
Body = "BtoQnunu.f90";
Complex(dp) :: cL, cR, br, br_SM, cL_SM, cR_SM, norm
Real(dp) :: f_mq, tf_mq, kappa_0, kappa_c, f_mc, BrBXeNu, sw2, mq
Real(dp) :: prefactor, factor1, factor2, GF
Integer :: out, i1, i2
! ----------------------------------------------------------------
! \bar{B} -> X_{d,s} nu nu
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on C. Bobeth et al, NPB 630 (2002) 87 [hep-ph/0112305]
! ----------------------------------------------------------------
kappa_0 = 0.830_dp
kappa_c = 0.88_dp
f_mc = 0.53_dp
BrBXeNu = 0.101_dp ! PDG central value
sw2 = sinw2_160
GF = (Alpha_160*4._dp*Pi/sinW2_160)/mw**2*sqrt2/8._dp
Do out = 1,2
If (out.eq.1) Then ! B -> X_d nu nu
mq = mf_d(1)/mf_d(3)
norm = Alpha_160*4._dp*GF/sqrt2/(2._dp*pi*sinw2_160)* &
& Conjg(CKM_160(3,3)*Conjg( CKM_160(3,1) ))
Else ! B -> X_s nu nu
mq = mf_d(2)/mf_d(3)
norm = Alpha_160*4._dp*GF/sqrt2/(2._dp*pi*sinw2_160)* &
& Conjg(CKM_160(3,3)*Conjg( CKM_160(3,2) ))
End if
! f and tilde f functions
f_mq = 1._dp - 8._dp*mq**2 + 8._dp*mq**6 - &
& mq**8 -24._dp*mq**4*Log(mq)
tf_mq = 1._dp + 9._dp*mq**2 - 9._dp*mq**4 - mq**6 + &
& 12._dp*mq**2*(1._dp + mq**2)*Log(mq)
prefactor = Alpha_mz**2/(4._dp*pi**2*sw2**2)*Abs(CKM_160(3,3)/ &
& CKM_160(2,3))**2*BrBXeNu/(f_mc*kappa_c)*kappa_0
factor1 = f_mq
factor2 = - 4._dp*mq*tf_mq
br = 0._dp
br_SM = 0._dp
Do i1= 1,3
Do i2 = 1,3
! BSM
cL = OddvvVLL(3,out,i1,i2)/norm
cR = OddvvVRL(3,out,i1,i2)/norm
br = br + factor1*(Abs(cL)**2 + Abs(cR)**2) + &
& factor2*Real(cL*Conjg(cR),dp)
! SM
cL = OddvvVLLSM(3,out,i1,i2)/norm
cR = OddvvVRLSM(3,out,i1,i2)/norm
br_SM = br_SM + factor1*(Abs(cL)**2 + Abs(cR)**2) + &
& factor2*Real(cL*Conjg(cR),dp)
End Do
End do
If (out.eq.1) Then ! B -> X_d nu nu
BrBtoDnunu = prefactor*br*Abs(CKM_160(3,1))**2
ratioBtoDnunu = br/br_SM
Else ! B -> X_s nu nu
BrBtoSnunu = prefactor*br*Abs(CKM_160(3,2))**2
ratioBtoSnunu = br/br_SM
End if
End Do
Kaon decays into Pions and pairs of neutrinos (K → πνν̄)
Following , the branching ratios for rare Kaon decays involving neutrinos in the final state can be written as
\BR \left( K^+ \to \pi^+ \nu \bar \nu \right) = 2 r_1 \, r_2 \, r_{K^+} \sum_f \left[ \left( \text{Im} \lambda_t X_f \right)^2 + \left( \text{Re} \lambda_c X_{NL} + \text{Re} \lambda_t X_f \right)^2 \right] \\ \BR \left( K_L \to \pi^0 \nu \bar \nu \right) = 2 r_1 \, r_{K_L} \sum_f \left( \text{Im} \lambda_t X_f \right)^2 \, ,
where the sums are over the three neutrino species, XN**L = 9.78 ⋅ 10−4 is the SM NLO charm correction , λt = Vt**s*Vt**d and λc = Vc**s*Vc**d, the coefficients r1, r2, rK+ and rKL take the numerical values
r_1 = 1.17 \cdot 10^{-4} \nonumber \\ r_2 = 0.24 \nonumber \\ r_{K^+} = 0.901 \nonumber \\ r_{K_L} = 0.944
and Xf contains the Wilson coefficients contributing to the processes, FL**LV and FR**LV, as
Xf = nKπν**ν (FL**LV+FR**LV) .
Here n_{K \pi \nu\nu}^{-1} = \frac{4 G_F}{\sqrt{2}} \frac{\alpha}{2 \pi \sin^2 \theta_W} V_{ts}^\ast V_{td}
.
NameProcess = "KtoPInunu";
NameObservables = {{BrKptoPipnunu, 8000, "BR(K^+ -> pi^+ nu nu)"},
{ratioKptoPipnunu, 8001, "BR(K^+ -> pi^+ nu nu)/BR(K^+ -> pi^+ nu nu)_SM"},
{BrKltoPinunu, 8002, "BR(K_L -> pi^0 nu nu)"},
{ratioKltoPinunu, 8003, "BR(K_L -> pi^0 nu nu)/BR(K_L -> pi^0 nu nu)_SM"}};
NeededOperators = {OddvvVRR, OddvvVLL, OddvvVRL, OddvvVLR,
OddvvVRRSM, OddvvVLLSM, OddvvVRLSM, OddvvVLRSM};
Body = "KtoPInunu.f90";
Complex(dp) :: br, r1, r2, rKp, rKl, Xx, XNL, Lt, Lc
Complex(dp) :: Xx_SM, br_SM, norm
Real(dp) :: GF
Integer :: out, i1, i2
! ----------------------------------------------------------------
! K -> pi nu nu
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on C. Bobeth et al, NPB 630 (2002) 87 [hep-ph/0112305]
! ----------------------------------------------------------------
GF = (Alpha_160*4._dp*Pi/sinW2_160)/mw**2*sqrt2/8._dp
norm = Alpha_160*4._dp*GF/sqrt2/(2._dp*pi*sinw2_160) &
& *Conjg(CKM_160(3,2))*CKM_160(3,1)
r1 = 1.17E-4_dp
r2 = 0.24_dp
rKp = 0.901
rKl = 0.944
! SM NLO charm correction
! See G. Buchalla and A. Buras, NPB 412 (1994) 106 and NPB 548 (1999) 309
XNL = 9.78E-4_dp
! out = 1 : K^+ -> pi^+ nu nu
! out = 2 : K_L -> pi^0 nu nu
Do out = 1,2
br = 0._dp
br_SM = 0._dp
Do i1= 1,3
Do i2 = 1,3
Xx = ((OddvvVLL(2,1,i1,i2)+OddvvVRL(2,1,i1,i2))/norm)
Xx_SM = ((OddvvVLLSM(2,1,i1,i2)+OddvvVRLSM(2,1,i1,i2))/norm)
Lt = Conjg(CKM_160(3,2))*CKM_160(3,1)
Lc = Conjg(CKM_160(2,2))*CKM_160(2,1)
If (out.eq.1) Then
br = br + Aimag(Xx*Lt)**2 + (Real(Lc*XNL,dp) + Real(Xx*Lt,dp))**2
br_SM = br_SM + Aimag(Xx_SM*Lt)**2 + &
& (Real(Lc*XNL,dp) + Real(Xx_SM*Lt,dp))**2
Else
br = br + Abs(Aimag(Xx*Lt))**2
br_SM = br_SM + Abs(Aimag(Xx_SM*Lt))**2
End if
End Do
End do
If (out.eq.1) Then ! K^+ -> pi^+ nu nu
BrKptoPipnunu = 2._dp*r1*r2*rKp*br
RatioKptoPipnunu = br/br_SM
! SM expectation: (7.2 +/- 2.1)*10^-11 (hep-ph/0112135)
Else ! K_L -> pi^0 nu nu
BrKltoPinunu = 2._dp*r1*rKl*br
RatioKltoPinunu = br/br_SM
! SM expectation: (3.1 +/- 1.0)*10^-11 (hep-ph/0408142)
End if
End Do
Mass splitting of neutral B-mesons (Δ****MBs**,** d)
The Bq0 − B̄q0 mass difference can be written as
\Delta M_{B_q} = \frac{G_F^2 m_W^2}{6 \pi^2} m_{B_q} \eta_B f_{B_q}^2 \hat B_{B_q} |V_{tq}^{\text{eff}}|^2 |F_{tt}^q| \, ,
where q = s, d, mBq and fBq are the Bq0 mass and decay constant, respectively, ηB = 0.55 is a QCD factor , B̂Bq is a non-perturbative parameter (with values B̂Bd = 1.26 and B̂Bs = 1.33, obtained from recent lattice computations ) and |Vt**qeff|2 = (Vt**b*Vt**q)2. Ft**tq is given by
F_{tt}^q = S_0(x_t) + \frac{1}{4 r} C_{\text{new}}^{VLL} \\ + \frac{1}{4 r} C_1^{VRR} + \bar{P}_1^{LR} C_1^{LR} + \bar{P}_2^{LR} C_2^{LR} \nonumber \\ + \bar{P}_1^{SLL} \left( C_1^{SLL} + C_1^{SRR} \right) + \bar{P}_2^{SLL} \left( C_2^{SLL} + C_2^{SRR} \right) \nonumber
where r = 0.985 , x_t = \frac{m_t^2}{m_W^2}
, with mt the top quark mass, the P̄ coefficients take the numerical values
\bar{P}_1^{LR} = -0.71 \nonumber \\ \bar{P}_2^{LR} = 0.90 \nonumber \\ \bar{P}_1^{SLL} = -0.37 \nonumber \\ \bar{P}_2^{SLL} = -0.72
and the function
S_0(x_t) = \frac{4 x_t - 11 x_t^2 + x_t^3}{4 (1-x_t)^2} - \frac{3 x_t^3 \log x_t}{2(1-x_t)^3}
was introduced by Inami and Lim in and given, for example, in . Finally, the coefficients in Eq. are related to the DX**YI coefficients in Eq. as
C_{\text{new}}^{VLL} = n^q_\Delta \left( D_{LL}^V - D_{LL}^{V,\text{SM}} \right) \\ C_1^{VRR} = n^q_\Delta D_{RR}^V \\ C_1^{LR} = n^q_\Delta \left( D_{LR}^V + D_{RL}^V \right) \\ C_2^{LR} = n^q_\Delta \left( D_{LR}^S + D_{RL}^S + \delta_2^{LR} \right) \\ C_1^{SLL} = n^q_\Delta \left( D_{LL}^S + \delta_1^{SLL} \right) \\ C_1^{SRR} = n^q_\Delta \left( D_{RR}^S + \delta_1^{SRR} \right) \\ C_2^{SLL} = n^q_\Delta D_{LL}^T \\ C_2^{SRR} = n^q_\Delta D_{RR}^T
where the factor \left(n^q_\Delta\right)^{-1} = \frac{G_F^2 m_W^2}{16 \pi^2} |V_{tq}^{\text{eff}}|^2
normalizes our Wilson coefficients to the ones in . The corrections δ2L**R, δ1SLL and δ1SRR are induced by double penguin diagrams mediated by scalar and pseudoscalar states . These 2-loop contributions may have a sizable impact in some models, and their inclusion is necessary in order to achieve a precise result for Δ**MBq. They can be written as
\delta_2^{LR} = - \frac{H_L^{S,P} \left(H_R^{S,P}\right)^\ast}{m_{S,P}^2} \\ \delta_1^{SLL} = - \frac{\left(H_L^{S,P}\right)^2}{2 \, m_{S,P}^2} \\ \delta_1^{SRR} = - \frac{\left(H_L^{S,P}\right)^2}{2 \, m_{S,P}^2}
where HLS, P and HRS, P are defined in Eq.. The double penguin corrections in Eqs.- are obtained by summing up over all scalar and pseudoscalar states in the model.
NameProcess = "DeltaMBq";
NameObservables = {{DeltaMBs, 1900, "Delta(M_Bs)"},
{ratioDeltaMBs, 1901, "Delta(M_Bs)/Delta(M_Bs)_SM"},
{DeltaMBq, 1902, "Delta(M_Bd)"},
{ratioDeltaMBq, 1903, "Delta(M_Bd)/Delta(M_Bd)_SM"}};
ExternalStates = {Fd};
NeededOperators = {O4dSLL, O4dSRR, O4dSRL, O4dSLR, O4dVRR, O4dVLL,
O4dVLLSM, O4dVRL, O4dVLR, O4dTLL, O4dTLR, O4dTRL, O4dTRR};
IncludeSMprediction["DeltaMBq"] = False;
Body = "DeltaMBq.f90";
Complex(dp) :: MBq, etaB, FBq2, BBq, Ftt, Veff2, r, &
& P1bLR, P2bLR, P1bSLL, P2bSLL, norm, &
& CVLLnew, C1VRR, C1LR, C2LR, C1SLL, C1SRR, C2SLL, C2SRR
Real(dp) :: hbar, xt, GF
Real(dp) :: mS
Complex(dp) :: HL, HR, AL, AR
Integer :: i1, iS
! ----------------------------------------------------------------
! Delta M_{Bd,Bs}
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on A. J. Buras et al, NPB 619 (2001) 434 [hep-ph/0107048]
! and NPB 659 (2003) 3 [hep-ph/0210145]
! ----------------------------------------------------------------
hbar = 6.58211889e-25_dp
xt = mf_u2_160(3)/mw2
r = 0.985_dp
P1bLR = -0.71_dp
P2bLR = 0.90_dp
P1bSLL = -0.37_dp
P2bSLL = -0.72_dp
! QCD factor, see A. J. Buras et al, NPB 47 (1990) 491
! and J. Urban et al, NPB 523 (1998) 40
etaB = 0.55_dp
GF = (Alpha_160*4._dp*Pi/sinW2_160)/mw**2*sqrt2/8._dp
Do i1 = 1,2
If (i1.eq.1) Then ! Delta M_Bd
MBq = mass_B0d
FBq2 = f_B0d_CONST**2
BBq = 1.26_dp ! see arXiv:0910.2928
Veff2 = Conjg(Conjg(CKM_160(3,3))*CKM_160(3,1))**2
Else ! Delta M_Bs
MBq = mass_B0s
FBq2 = f_B0s_CONST**2
BBq = 1.33_dp ! see arXiv:0910.2928
Veff2 = Conjg(Conjg(CKM_160(3,3))*CKM_160(3,2))**2
End if
! normalization factor
norm = GF**2*mw2/(16._dp*Pi**2)*Veff2
! Wilson coefficients
CVLLnew = (O4dVLL(3,i1,3,i1)-O4dVLLSM(3,i1,3,i1))/norm ! we remove the SM contribution
C1VRR = O4dVRR(3,i1,3,i1)/norm
C1LR = (O4dVLR(3,i1,3,i1)+O4dVRL(3,i1,3,i1))/norm
C2LR = (O4dSLR(3,i1,3,i1)+O4dSRL(3,i1,3,i1))/norm
C1SLL = O4dSLL(3,i1,3,i1)/norm
C1SRR = O4dSRR(3,i1,3,i1)/norm
C2SLL = O4dTLL(3,i1,3,i1)/norm
C2SRR = O4dTRR(3,i1,3,i1)/norm
! Double Higgs penguins
@ If[getGen[HiggsBoson] > 1, "Do iS = 1, "<>ToString[getGen[HiggsBoson]],""]
@ If[getGen[HiggsBoson] > 1, "HL = OH2qSL(3,i1,iS)", "HL = OH2qSL(3,i1)"]
@ If[getGen[HiggsBoson] > 1, "HR = OH2qSR(3,i1,iS)", "HR = OH2qSR(3,i1)"]
@ If[getGen[HiggsBoson] > 1, "mS = "<>SPhenoMassSq[HiggsBoson,iS], "mS = "<>SPhenoMassSq[HiggsBoson]]
C2LR = C2LR - HL*Conjg(HR)/(mS*norm)
C1SLL = C1SLL - 0.5_dp*HL**2/(mS*norm)
C1SRR = C1SRR - 0.5_dp*HR**2/(mS*norm)
@ If[getGen[HiggsBoson] > 1,"End Do",""]
@ If[getGen[PseudoScalar] > 1, "Do iS = "<>ToString[getGenSPhenoStart[PseudoScalar]]<>", "<>ToString[getGen[PseudoScalar]],""]
@ If[getGen[PseudoScalar] > 1, "AL = OAh2qSL(3,i1,iS)", "AL = OAh2qSL(3,i1)"]
@ If[getGen[PseudoScalar] > 1, "AR = OAh2qSR(3,i1,iS)", "AR = OAh2qSR(3,i1)"]
@ If[getGen[PseudoScalar] > 1, "mS = "<>SPhenoMassSq[PseudoScalar,iS], "mS = "<>SPhenoMassSq[PseudoScalar]]
C2LR = C2LR - AL*Conjg(AR)/(mS*norm)
C1SLL = C1SLL - 0.5_dp*AL**2/(mS*norm)
C1SRR = C1SRR - 0.5_dp*AR**2/(mS*norm)
@ If[getGen[PseudoScalar] > 1,"End Do",""]
Ftt = S0xt(xt) + CVLLnew/(4._dp*r) + &
& C1VRR/(4._dp*r) + P1bLR*C1LR + P2bLR*C2LR + &
& P1bSLL*(C1SLL + C1SRR) + P2bSLL*(C2SLL + C2SRR)
If (i1.eq.1) Then ! Delta M_Bd
ratioDeltaMBq = Abs(Ftt/S0xt(xt))
DeltaMBq = G_F**2*mw2/(6._dp*Pi**2)* &
& MBq*etaB*BBq*FBq2*Veff2*Abs(Ftt)*1.e-12_dp/hbar
Else ! Delta M_Bs
ratioDeltaMBs = Abs(Ftt/S0xt(xt))
DeltaMBs = G_F**2*mw2/(6._dp*Pi**2)* &
& MBq*etaB*BBq*FBq2*Veff2*Abs(Ftt)*1.e-12_dp/hbar
End if
End Do
Contains
Real(dp) Function S0xt(x) ! See for example hep-ph/9806471
Implicit None
Real(dp), Intent(in) :: x
S0xt = 1._dp - 2.75_dp * x + 0.25_dp * x**2 &
& - 1.5_dp * x**2 * Log(x) / (1-x)
S0xt = x*S0xt / (1 -x)**2
End Function S0xt
Mass splitting of neutral Koans (Δ****MK, εK)
Δ**MK and εK, the observables associated to K0 − K̄0 mixing, can be written as
\Delta M_{K} = 2 \, \text{Re} \, \langle \bar K^0 | H_\text{eff}^{\Delta S = 2} | K^0 \rangle \\ \varepsilon_K = \frac{e^{i \pi/4}}{\sqrt{2} \Delta M_{K}} \, \text{Im} \, \langle \bar K^0 | H_\text{eff}^{\Delta S = 2} | K^0 \rangle \, .
The matrix element in Eqs. and is given by
\langle \bar K^0 | H_\text{eff}^{\Delta S = 2} | K^0 \rangle = f_V \left( D_{LL}^V + D_{RR}^V \right) + f_S \left( D_{LL}^S + D_{RR}^S \right) + f_T \left( D_{LL}^T + D_{RR}^T \right) \nonumber \\ + f_{LR}^1 \left( D_{LR}^S + D_{RL}^S \right) + f_{LR}^2 \left( D_{LR}^V + D_{RL}^V \right) \, .
The f coefficients are
f_V = \frac{1}{3} m_K f_K^2 B_1^{VLL}(\mu) \\ f_S = - \frac{5}{24} \left( \frac{m_K}{m_s(\mu) + m_d(\mu)} \right)^2 m_K f_K^2 B_1^{SLL}(\mu) \\ f_T = - \frac{1}{2} \left( \frac{m_K}{m_s(\mu) + m_d(\mu)} \right)^2 m_K f_K^2 B_2^{SLL}(\mu) \\ f_{LR}^1 = - \frac{1}{6} \left( \frac{m_K}{m_s(\mu) + m_d(\mu)} \right)^2 m_K f_K^2 B_1^{LR}(\mu) \\ f_{LR}^2 = \frac{1}{4} \left( \frac{m_K}{m_s(\mu) + m_d(\mu)} \right)^2 m_K f_K^2 B_2^{LR}(\mu)
where μ = 2 GeV is the energy scale at which the matrix element is computed and fK the Kaon decay constant. The values of the quark masses at μ = 2 GeV are given by md(μ)=7 MeV and ms(μ)=125 MeV (see table 1 in ), whereas the BiX coefficients have the following values at μ = 2 GeV : B1VLL(μ)=0.61, B1SLL(μ)=0.76, B2SLL(μ)=0.51, B1L**R(μ)=0.96 and B2L**R(μ)=1.3.
As in , we treat the SM contribution separately. We define DL**LV = DL**LV, S**M + DL**LV, BSM. For DL**LV, BSM one just subtracts the SM contributions to DL**LV, whereas for DL**LV, S**M one can use the results in , where the relevant QCD corrections are included,
D_{LL}^{V,SM} = \frac{G_F^2 m_W^2}{4 \pi^2} \left[ \lambda_c^{\ast \, 2} \eta_1 S_0(x_c) + \lambda_t^{\ast \, 2} \eta_2 S_0(x_t) + 2 \lambda_c^\ast \lambda_t^\ast \eta_3 S_0(x_c,x_t) \right] \, .
Here xi = mi2/mw2, λi = Vi**s*Vi**d and S0(x) and S0(x, y) are the Inami-Lim functions . S0(x) was already defined in Eq. , whereas S0(xc, xt) is given by
S_0(x_c,x_t) = x_c \left[ \log \frac{x_t}{x_c} - \frac{3 x_t}{4(1-x_t)} - \frac{3 x_t^2 \log x_t}{4 (1-x_t)^2} \right] \, .
In the last expression we have kept only terms linear in xc ≪ 1. Finally, the ηi coefficients comprise short distance QCD corrections. Their numerical values are η1, 2, 3 = (1.44,0.57,0.47) [2].
NameProcess = "KKmix";
NameObservables = {{DeltaMK, 9100, "Delta(M_K)"},
{ratioDeltaMK, 9102, "Delta(M_K)/Delta(M_K)_SM"},
{epsK, 9103, "epsilon_K"},
{ratioepsK, 9104, "epsilon_K/epsilon_K^SM"}};
NeededOperators = {O4dSLL, O4dSRR, O4dSRL, O4dSLR, O4dVRR, O4dVLL, O4dVRL,
O4dVLR, O4dTLL, O4dTLR, O4dTRL, O4dTRR,
O4dSLLSM, O4dSRRSM, O4dSRLSM, O4dSLRSM, O4dVRRSM, O4dVLLSM, O4dVRLSM, O4dVLRSM,
O4dTLLSM, O4dTLRSM, O4dTRLSM, O4dTRRSM};
Body = "KKmix.f90";
Real(dp) :: b_VLL, b_SLL1, b_SLL2, b_LR1, b_LR2
Real(dp) :: ms_mu, md_mu
Complex(dp) :: CVLL, CVRR, CSLL, CSRR, CTLL, CTRR, CLR1, CLR2
Complex(dp) :: fV, fS, fT, fLR1, fLR2, cVLLSM
Complex(dp) :: f_k, M_K, H2eff, DeltaMK_SM, epsK_SM
Real(dp) :: norm, hbar, xt, xc, GF
Integer :: i1
Real(dp), Parameter :: eta_tt = 0.57_dp, eta_ct = 0.47_dp, &
& eta_cc = 1.44_dp
! Parameters from S. Herrlich and U. Nierste NPB 476 (1996) 27
! ----------------------------------------------------------------
! Delta M_K and epsilon_K
! Observables implemented by W. Porod, F. Staub and A. Vicente
! Based on A. Crivellin et al, Comput. Phys. Commun. 184 (2013) 1004 [arXiv:1203.5023]
! ----------------------------------------------------------------
! using globally defined hadronic parameters
M_K = mass_K0
f_K = f_k_CONST
xt = mf_u(3)**2 / mW**2
xc = mf_u(2)**2 / mW**2
GF = (Alpha_160*4._dp*Pi/sinW2_160)/mw**2*sqrt2/8._dp
! Coefficients at mu = 2 GeV
! See A. J. Buras et al, NPB 605 (2001) 600 [hep-ph/0102316]
b_VLL = 0.61_dp
b_SLL1 = 0.76_dp
b_SLL2 = 0.51_dp
b_LR1 = 0.96_dp
b_LR2 = 1.3_dp
! Quark mass values at mu = 2 GeV
! See M. Ciuchini et al, JHEP 9810 (1998) 008 [hep-ph/9808328] - Table 1
md_mu = 0.007_dp
ms_mu = 0.125_dp
fV = 1._dp/3._dp*M_K*f_k**2*b_VLL
fS = -5._dp/24._dp*M_K*f_K**2*(M_K/(ms_mu+md_mu))**2*b_SLL1
fT = -1._dp/2._dp*M_K*f_K**2*(M_K/(ms_mu+md_mu))**2*b_SLL2
fLR1 = -1._dp/6._dp*M_K*f_K**2*(M_K/(ms_mu+md_mu))**2*b_LR1
fLR2 = 1._dp/4._dp*M_K*f_K**2*(M_K/(ms_mu+md_mu))**2*b_LR2
! SM contribution
! Based on the results by S. Herrlich and U. Nierste
! NPB 419 (1994) 292, PRD 52 (1995) 6505 and NPB 476 (1996) 27
cVLLSM = eta_cc * (Conjg(CKM_160(2,2))*CKM_160(2,1))**2 * S0xt(xc) &
& + eta_tt * (Conjg(CKM_160(3,2))*CKM_160(3,1))**2 * S0xt(xt) &
& + Conjg(CKM_160(2,2)*CKM_160(3,2))*(CKM_160(2,1)*CKM_160(3,1)) &
& * 2._dp * eta_ct * S0_2(xc,xt)
cVLLSM = Conjg(cVLLSM) ! we compute (d\bar{s})(d\bar{s}) and not (\bar{d}s)(\bar{d}s)
cVLLSM = oo4pi2*(GF*mW)**2*cVLLSM ! normalization
! BSM contributions (+SM in CVLL)
CVLL = O4dVLL(2,1,2,1)-O4dVLLSM(2,1,2,1)+cVLLSM
CVRR = O4dVRR(2,1,2,1)
CSLL = O4dSLL(2,1,2,1)
CSRR = O4dSRR(2,1,2,1)
CTLL = O4dTLL(2,1,2,1)
CTRR = O4dTRR(2,1,2,1)
CLR1 = O4dSLR(2,1,2,1)+O4dSRL(2,1,2,1)
CLR2 = O4dVLR(2,1,2,1)+O4dVRL(2,1,2,1)
! BSM
H2eff = fV*(CVLL+CVRR) + fS*(CSLL+CSRR) +fT*(CTLL+CTRR) &
& + fLR1*CLR1 + fLR2*CLR2
DeltaMK = Abs(2._dp*Real(H2eff,dp))
epsK = 1._dp/(sqrt2*DeltaMK)*Abs(Aimag(H2eff))
! SM
H2eff = fV*cVLLSM
DeltaMK_SM = Abs(2._dp*Real(H2eff,dp))
epsK_SM = 1._dp/(sqrt2*DeltaMK_SM)*Abs(Aimag(H2eff))
ratioDeltaMK = DeltaMK/DeltaMK_SM
ratioepsK = epsK/epsK_SM
Contains
! Inami - Lim functions
Real(dp) Function S0xt(x)
Implicit None
Real(dp), Intent(in) :: x
S0xt = 1._dp - 2.75_dp * x + 0.25_dp * x**2 - &
& 1.5_dp * x**2 * Log(x) / (1-x)
S0xt = x*S0xt / (1 -x)**2
End Function S0xt
Real(dp) Function S0_2(xc, xt)
Implicit None
Real(dp), Intent(in) :: xc, xt
S0_2 = Log(xt/xc) - 0.75_dp * xt /(1-xt) &
& - 0.75_dp * xt**2 * Log(xt) / (1-xt)**2
S0_2 = xc * S0_2
End Function S0_2
Pseudo-scalar decays into charged leptons and neutrinos (P → ℓ****ν)
Although P → ℓν, where P = q**q′ is a pseudoscalar meson, does not violate quark flavor, we have included it in the list of observables for practical reasons, as it can be computed with the same ingredients as the QFV observables. The decay width for the process P → ℓαν is given by
\Gamma \left( P \to \ell_\alpha \nu \right) = \frac{|G_F f_P (m_P^2 - m_{\ell_\alpha}^2)|^2}{8 \pi m_P^3} \\ \times \sum_\nu \left| V_{qq'} m_{\ell_\alpha} + \frac{m_{\ell_\alpha}}{2 \sqrt{2}} \left( G_{LL}^V - G_{RL}^V \right) + \frac{m_P^2}{2 \sqrt{2} (m_q + m_{q'})} \left( G_{RR}^S - G_{LR}^S \right) \right|^2 \, . \nonumber
Here fP is the meson decay constant, mq and mq′ are the masses of the quarks in the meson and the Wilson coefficients GX**YI are defined in Eq.. The sum in Eq. is over the three neutrinos (whose masses are neglected).
Each P → ℓαν decay width is plagued by hadronic uncertainties. However, by taking the ratios
R_P = \frac{\Gamma \left( P \to e \nu \right)}{\Gamma \left( P \to \mu \nu \right)}
the hadronic uncertainties cancel out to a good approximation, allowing for a precise theoretical determination. In case of RK, the SM prediction includes small electromagnetic corrections that account for internal bremsstrahlung and structure-dependent effects . This leads to an impressive theoretical uncertainty of δ**RK/RK ∼ 0.1%, making RP the perfect observable to search for lepton flavor universality violation .
NameProcess = "Plnu";
NameObservables = {{BrDmunu, 300, "BR(D->mu nu)"},
{ratioDmunu, 301, "BR(D->mu nu)/BR(D->mu nu)_SM"},
{BrDsmunu, 400, "BR(Ds->mu nu)"},
{ratioDsmunu, 401, "BR(Ds->mu nu)/BR(Ds->mu nu)_SM"},
{BrDstaunu, 402, "BR(Ds->tau nu)"},
{ratioDstaunu, 403, "BR(Ds->tau nu)/BR(Ds->tau nu)_SM"},
{BrBmunu, 500, "BR(B->mu nu)"},
{ratioBmunu, 501, "BR(B->mu nu)/BR(B->mu nu)_SM"},
{BrBtaunu, 502, "BR(B->tau nu)"},
{ratioBtaunu, 503, "BR(B->tau nu)/BR(B->tau nu)_SM"},
{BrKmunu, 600, "BR(K->mu nu)"},
{ratioKmunu, 601, "BR(K->mu nu)/BR(K->mu nu)_SM"},
{RK, 602 ,"R_K = BR(K->e nu)/(K->mu nu)"},
{RKSM, 603 ,"R_K^SM = BR(K->e nu)_SM/(K->mu nu)_SM"}};
NeededOperators = {OdulvSLL, OdulvSRR, OdulvSRL, OdulvSLR,
OdulvVRR, OdulvVLL, OdulvVRL, OdulvVLR,
OdulvSLLSM, OdulvSRRSM, OdulvSRLSM, OdulvSLRSM,
OdulvVRRSM, OdulvVLLSM, OdulvVRLSM, OdulvVLRSM
};
Body = "Plnu.f90";
Integer :: gt1, gt2, i1, i2, iP
Complex(dp) :: br, br_SM
Real(dp) :: m_M, f_M, tau_M, mlep, mq1, mq2, hbar, ratio, &
& BrKenuSM, BRKenu, QED
! ----------------------------------------------------------------
! P -> l nu
! Observable implemented by W. Porod, F. Staub and A. Vicente
! Based on J. Barranco et al, arXiv:1303.3896
! ----------------------------------------------------------------
hbar = 6.58211889e-25_dp
! Electromagnetic correction to R_K
! See V. Cirigliano, I. Rosell, PRL 99 (2007) 231801 [arXiv:0707.3439]
QED = -3.6e-2_dp
! meson parameters
Do iP=1,4
If (iP.eq.1) Then ! Ds-meson
gt1 = 2
gt2 = 2
m_M = mass_Dsp
f_M = f_DSp_CONST
tau_M = tau_DSp/hbar
Elseif (iP.eq.2) Then ! B-meson
gt1 = 3
gt2 = 1
m_M = mass_Bp
f_M = f_Bp_CONST
tau_M = tau_Bp/hbar
Elseif (iP.eq.3) Then ! Kaon
gt1 = 2
gt2 = 1
m_M = mass_Kp
f_M = f_Kp_CONST
tau_M = tau_Kp/hbar
Elseif (iP.eq.4) Then ! D-meson
gt1 = 1
gt2 = 2
m_M = mass_Dp
f_M = f_Dp_CONST
tau_M = tau_Dp/hbar
End if
mq1 = mf_u_160(gt2)
mq2 = mf_d_160(gt1)
Do i1=1,3
br = 0._dp
br_SM = 0._dp
mlep = mf_l(i1)
Do i2=1,3
br = br + ((OdulvVLL(gt1,gt2,i1,i2)-OdulvVLR(gt1,gt2,i1,i2))*mlep/ &
& (2._dp*sqrt2) &
& + m_M**2*(OdulvSRL(gt1,gt2,i1,i2)-OdulvSLL(gt1,gt2,i1,i2))/ &
& (2._dp*sqrt2*(mq1+mq2)))
br_SM = br_SM+ (OdulvVLLSM(gt1,gt2,i1,i2)-OdulvVLRSM(gt1,gt2,i1,i2)) &
& *mlep/(2._dp*sqrt2)
End Do
ratio = Abs(br/br_SM)**2
br = oo8pi*tau_M*(f_M)**2*M_M*Abs(br)**2*(1._dp - mlep**2/M_M**2)**2 ! G_F already in coefficients included
If (iP.eq.1) Then !! Ds-meson
If (i1.eq.2) Then ! Ds->mu nu
BrDsmunu = br
ratioDsmunu = ratio
Elseif (i1.eq.3) Then ! Ds->tau nu
BrDstaunu = br
ratioDstaunu = ratio
End if
Elseif (iP.eq.2) Then !! B-meson
If (i1.eq.2) Then ! B->mu nu
BrBmunu = br
ratioBmunu = ratio
Else ! B->tau nu
BrBtaunu = br
ratioBtaunu = ratio
End if
Else If (iP.eq.3) Then !! Kaon
If (i1.eq.1) Then ! K->e nu
BrKenu = br
BrKenuSM = BrKenu*ratio
Elseif (i1.eq.2) Then ! K->mu nu
BrKmunu = br
ratioKmunu = ratio
RK = BrKenu/BrKmunu*(1+QED)
RKSM = BrKenuSM/BrKmunu*ratio*(1+QED)
End if
Else If (iP.eq.4) Then !! D-meson
If (i1.eq.2) Then ! D->mu nu
BrDmunu = br
ratioDmunu = ratio
End if
End if
End Do
End Do
See also
[1] Notice that our effective Lagrangian differs from the one in by a 1/(4π)2 factor. This relative factor has been absorbed in the expression for ℳℬℓℓ, see Eq..
[2] Note that we have chosen a value for η1 which results from our numerical values for αs(mZ) and mc(mc), see table 5 in .