Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
SARAH SARAH
  • Project overview
    • Project overview
    • Details
    • Activity
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Activity
Collapse sidebar
  • GOODSELL Mark
  • SARAHSARAH
  • Wiki
  • Loop_functions

Last edited by Martin Gabelmann Jun 28, 2019
Page history

Loop_functions

Loop functions

We used for the calculation of the one-loop self energies and the one-loop corrections to the tadpoles in {\overline{\text{DR}}}-scheme the scalar functions defined in . The basic integrals are

A_0(m) = 16\pi^2Q^{4-n}\int{\frac{d^nq}{ i\,(2\pi)^n}}{\frac{1}{ q^2-m^2+i\varepsilon}} \thickspace ,\\ B_0(p, m_1, m_2) = 16\pi^2Q^{4-n}\int{\frac{d^nq}{ i\,(2\pi)^n}} {\frac{1}{\biggl[q^2-m^2_1+i\varepsilon\biggr]\biggl[ (q-p)^2-m_2^2+i\varepsilon\biggr]}} \thickspace ,

with the renormalization scale Q. The integrals are regularized by integrating in n = 4 − 2ϵ dimensions. The result for A0 is

A_0(m)\ =\ m^2\left({\frac{1}{\hat\epsilon}} + 1 - \ln{\frac{m^2}{Q^2}}\right)~,

where 1/ϵ̂ = 1/ϵ − γE + ln 4π. The function B0 has the analytic expression

B_0(p, m_1, m_2) \ =\ {\frac{1}{\hat\epsilon}} - \ln\left(\frac{p^2}{Q^2}\right) - f_B(x_+) - f_B(x_-)~,

with

x_{\pm}\ =\ \frac{s \pm \sqrt{s^2 - 4p^2(m_1^2-i\varepsilon)}}{2p^2}~, \qquad f_B(x) \ =\ \ln(1-x) - x\ln(1-x^{-1})-1~,

and s = p2 − m22 + m12. All the other, necessary functions can be expressed by A0 and B0. For instance,

B_1(p, m_1,m_2) \ =\ -{\frac{1}{2p^2}}\biggl[ A_0(m_2) - A_0(m_1) + (p^2 +m_1^2 -m_2^2) B_0(p, m_1, m_2)\biggr]~,

and

B_{22}(p, m_1,m_2) = \frac{1}{6}\ \Bigg\{\, \frac{1}{2}\biggl(A_0(m_1)+A_0(m_2)\biggr) +\left(m_1^2+m_2^2-\frac{1}{2}p^2\right)B_0(p,m_1,m_2)\nonumber \\ + \frac{m_2^2-m_1^2}{2p^2}\ \biggl[\,A_0(m_2)-A_0(m_1)-(m_2^2-m_1^2) B_0(p,m_1,m_2)\,\biggr] \nonumber\\ + m_1^2 + m_2^2 -\frac{1}{3}p^2\,\Bigg\}~.

Furthermore, for the vector boson self-energies it is useful to define

F_0(p,m_1,m_2) = A_0(m_1)-2A_0(m_2)- (2p^2+2m^2_1-m^2_2)B_0(p,m_1,m_2) \ , \\ G_0(p,m_1,m_2) = (p^2-m_1^2-m_2^2)B_0(p,m_1,m_2)-A_0(m_1)-A_0(m_2)\ ,\\ H_0 (p,m_1,m_2) = 4B_{22}(p,m_1,m_2) + G(p,m_1,m_2)\ ,\\ \tilde{B}_{22}(p,m_1,m_2) = B_{22}(p,m_1,m_2) - \frac{1}{4}A_0(m_1) - \frac{1}{4}A_0(m_2)

See also

Clone repository

Home

Index

  • Additional terms in Lagrangian
  • Advanced usage of FlavorKit
  • Advanced usage of FlavorKit to calculate new Wilson coefficients
  • Advanced usage of FlavorKit to define new observables
  • Already defined Operators in FlavorKit
  • Already defined observables in FlavorKit
  • Auto-generated templates for particles.m and parameters.m
  • Automatic index contraction
  • Basic definitions for a non-supersymmetric model
  • Basic definitions for a supersymmetric model
  • Basic usage of FlavorKit
  • Boundary conditions in SPheno
  • CalcHep CompHep
  • Calculation of flavour and precision observables with SPheno
  • Checking the particles and parameters within Mathematica
  • Checks of implemented models
  • Conventions
  • Decay calculation with SPheno
  • Defined FlavorKit parameters
  • Definition of the properties of different eigenstates
  • Delete Particles
  • Different sets of eigenstates
  • Diphoton and digluon vertices with SPheno
  • Dirac Spinors
  • FeynArts
  • Fine-Tuning calculations with SPheno
  • Flags for SPheno Output
  • Flags in SPheno LesHouches file
  • FlavorKit
  • FlavorKit Download and Installation
  • Flavour Decomposition
  • GUT scale condition in SPheno
  • Gauge Symmetries SUSY
  • Gauge Symmetries non-SUSY
  • Gauge fixing
  • Gauge group constants
  • General information about Field Properties
  • General information about model implementations
  • Generating files with particle properties
  • Generic RGE calculation
  • Global Symmetries SUSY
  • Global Symmetries non-SUSY
  • Handling of Tadpoles with SPheno
  • Handling of non-fundamental representations
  • HiggsBounds
  • Higher dimensionsal terms in superpotential
  • Input parameters of SPheno
  • Installation
  • Installing Vevacious
  • LHCP
  • LHPC
  • LaTeX
  • Lagrangian
  • Loop Masses
  • Loop calculations
  • Loop functions
  • Low or High scale SPheno version
  • Main Commands
  • Main Model File
  • Matching to the SM in SPheno
  • MicrOmegas
  • ModelOutput
  • Model files for Monte-Carlo tools
  • Model files for other tools
  • Models with Thresholds in SPheno
  • Models with another gauge group at the SUSY scale
  • Models with several generations of Higgs doublets
  • More precise mass spectrum calculation
  • No SPheno output possible
  • Nomenclature for fields in non-supersymmetric models
  • Nomenclature for fields in supersymmetric models
  • One-Loop Self-Energies and Tadpoles
  • One-Loop Threshold Corrections in Scalar Sectors
  • Options SUSY Models
  • Options non-SUSY Models
  • Parameters.m
  • Particle Content SUSY
  • Particle Content non-SUSY
  • Particles.m
  • Phases
  • Potential
  • Presence of super-heavy particles
  • RGE Running with Mathematica
  • RGEs
  • Renormalisation procedure of SPheno
  • Rotations angles in SPheno
  • Rotations in gauge sector
  • Rotations in matter sector
  • SARAH in a Nutshell
  • SARAH wiki
  • SLHA input for Vevacious
  • SPheno
  • SPheno Higgs production
  • SPheno Output
  • SPheno and Monte-Carlo tools
  • SPheno files
  • SPheno mass calculation
  • SPheno threshold corrections
  • Setting up SPheno.m
  • Setting up Vevacious
  • Setting up the SPheno properties
  • Special fields and parameters in SARAH
  • Superpotential
  • Support of Dirac Gauginos
  • Supported Models
  • Supported gauge sectors
  • Supported global symmetries
  • Supported matter sector
  • Supported options for symmetry breaking
  • Supported particle mixing
  • Tadpole Equations
  • The renormalisation scale in SPheno
  • Tree-level calculations
  • Tree Masses
  • Two-Loop Self-Energies and Tadpoles
  • UFO
  • Usage of tadpoles equations
  • Using SPheno for two-loop masses
  • Using auxiliary parameters in SPheno
  • VEVs
  • Vertices
  • Vevacious
  • WHIZARD